$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

커피 은피와 커피찌꺼기를 활용한 지속가능한 포장소재 개발을 위한 연구동향
Development of Sustainable Packaging Materials Using Coffee Silverskin and Spent Coffee Grounds: A Comprehensive Review 원문보기

한국포장학회지= Korean Journal of Packaging Science & Technology, v.30 no.1, 2024년, pp.1 - 14  

황지현 (국립강릉원주대학교, 생명과학대학, 해양바이오식품학과) ,  김도완 (국립강릉원주대학교, 생명과학대학, 해양바이오식품학과)

초록
AI-Helper 아이콘AI-Helper

환경문제에 대한 관심이 증가함에 따라 지속가능한 소재에 대한 요구가 증가하고 있다. 전 세계적으로 커피는 가장 많이 소비되는 음료이며, 커피음료의 가공 및 소비로 발생하는 커피 부산물에는 셀룰로오스, 헤미셀룰로오스, 리그닌, 지질 및 생리활성물질 등이 풍부하지만 대부분 폐기되는 실정이다. 따라서, 많은 연구자들이 커피 부산물을 고부가가치 소재로 개발하기 위하여 노력하고 있다. 본 총설에서는 고분자/커피 은피 복합화 연구, 커피 은피로부터 셀룰로오스 추출 및 응용연구, 고분자/커피찌꺼기 복합화 연구, 커피찌꺼기로부터 셀룰로오스 추출 및 이를 활용한 연구, 커피찌꺼기로부터 지질 추출 및 이를 활용한 PHAs합성, 가소제로써 커피찌꺼기로부터 추출한 지질의 응용가능성 연구 등에 대하여 조사하였다. 선행 연구에서는 커피 부산물인 커피 은피 및 커피찌꺼기 자체를 고분자와 혼합하여 복합소재를 제조하고 물성을 평가하는 연구는 광범위하게 수행되고 있는 것으로 확인되었다. 하지만, 커피 은피 및 커피찌꺼기로부터 나노셀룰로오스를 추출하거나, 상대적으로 친수성인 커피 부산물과 소수성인 석유계 고분자 또는 생분해성 고분자와 복합화 시 상용성 개선과 관련된 커피 부산물의 표면 개질 및 상용화제 도입 등의 연구는 부족함을 확인하였다. 또한 커피 부산물로부터 추출한 지질을 활용하여 PHAs를 합성하는 연구가 일부 진행되고 있지만 합성된 PHAs를 활용하여 포장소재로의 제조 및 응용에 관한 추가적인 연구가 필요하다고 사료된다. 또한, 커피찌꺼기의 발생량 대비 국내외 관리방안 마련 및 제품 적용 시 안전성 평가방법에 관한 연구는 거의 실시되지 않아 이에 대한 추가적인 연구가 필요하다고 판단된다.

Abstract AI-Helper 아이콘AI-Helper

As awareness of environmental issues continues to grow, there is an escalating demand for recycling and repurposing byproducts of agricultural and food production processes and their conversion to high-value products. Coffee is the most widely consumed beverage globally; during coffee beverage proce...

주제어

참고문헌 (60)

  1. Garcia, C.V. and Kim, Y-T. 2021. Spent coffee grounds and?coffee silverskin as potential materials for packaging: a review.?J. Polym. Environ. 29: 2372-2384. 

  2. Sisti, L., Celli, A., Totaro, G., Cinelli, P., Signori, F., Lazzeri,?A., Bikaki, M., Corvini, P., Ferri, M., Tassoni, A. and Navarini,?L. 2021. Monomers, materials and energy from coffee byproducts: a review. Sustainability. 13: 6921. 

  3. Hoseini, M., Cocco, S., Casucci, C., Cardelli, V. and Corti, G. 2021. Coffee by-products derived resources. a review. Biomass?Bioenergy. 148: 106009. 

  4. Duran-Aranguren, D.D., Robledo, S., Gomez-Restrepo, E.,?Arboleda Valencia, J.W. and Tarazona, N.A. 2021. Scientometric?overview of coffee by-products and their applications.?Molecules. 26: 7605. 

  5. Serna-Jimenez, J.A., Siles, J.A., de los Angeles Martin, M.?and Chica, A.F. 2022. A review on the applications of coffee?waste derived from primary processing: strategies for?revalorization. Processes. 10: 2436. 

  6. Nam, G., Kim, M-S. and Ahn, J.W. 2017. Analyses for?current research status for the coffee by-product and for?status of coffee wastes in Seoul. J. Energy Eng. 26: 14-22. 

  7. Esquivel, P. and Jimenez, V.M. 2012. Functional properties?of coffee and coffee by-products. Food Res. Int. 46: 488-495. 

  8. Hejna, A. 2021. Potential applications of by-products from?the coffee industry in polymer technology-current state and?perspectives. Waste Manag. 121: 296-330. 

  9. Murthy, P.S. and Madhava Naidu, M. 2012. Sustainable?management of coffee industry by-products and value addition-a review. Resour. Conserv. Recycl. 66: 45-58. 

  10. Klingel, T., Kremer, J.I., Gottstein, V., Rajcic de Rezende, T.,?Schwarz, S. and Lachenmeier, D.W. 2020. A Review of?coffee by-products including leaf, flower, cherry, husk, silver?skin, and spent grounds as novel foods within the European?Union. Foods. 9: 665. 

  11. Iriondo-DeHond, A., Iriondo-DeHond, M. and Del Castillo,?M.D. 2020. Applications of compounds from coffee processing?by-products. Biomolecules. 10: 1219. 

  12. Campos, R.C., Pinto, V.R.A., Melo, L.F., Da Rocha, S.J.S.S.?and Coimbra, J.S. 2021. New sustainable perspectives for?"coffee wastewater" and other by-products: a critical review.?Future Foods. 4: 100058. 

  13. Forcina, A., Petrillo, A., Travaglioni, M., Chiara, S.D. and?Felice, F.D. 2023. A comparative life cycle assessment of?different spent coffee ground reuse strategies and a sensitivity?analysis for verifying the environmental convenience based on?the location of sites. J. Clean. Prod. 385: 135727. 

  14. Mata, T.M., Martins, A.A. and Caetano, N.S. 2018. Bio-refinery approach for spent coffee grounds valorization.?Bioresour. Technol. 247: 1077-1084. 

  15. Franca, A.S. and Oliveira, L.S. 2022. Potential uses of spent?coffee grounds in the food industry. Foods. 11: 2064. 

  16. Oliveira, G., Passos, C.P., Ferreira, P., Coimbra, M.A. and?Goncalves, I. 2021. Coffee by-products and their suitability?for developing active food packaging materials. Foods 10:?683. 

  17. Jimenez-Zamora, A., Pastoriza, S. and Rufian-Henares, J.A. 2015. Revalorization of coffee by-products. Prebiotic, antimicrobial?and antioxidant properties. LWT - Food Sci. Technol. 61:?12-18. 

  18. Narita, Y. and Inouye, K. 2014. Review on utilization and?composition of coffee silverskin. Food Res. Int. 61: 16-22. 

  19. Sung, S.H., Chang, Y. and Han, J. 2017. Development of?polylactic acid nanocomposite films reinforced with cellulose?nanocrystals derived from coffee silverskin. Carbohydr.?Polym. 169: 495-503. 

  20. Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M.?and Mohanty, A.K. 2016. Characterization of wastes and?coproducts from the coffee industry for composite material?production. BioResources. 11: 7637-7653. 

  21. Hejna, A., Barczewski, M., Kosmela, P., Mysiukiewicz, O.?and Kuzmin, A. 2021. Coffee silverskin as a multifunctional?waste filler for high-density polyethylene green composites.?J. Compos. Sci. 5: 44. 

  22. Sarasini, F., Tirillo, J., Zuorro, A., Maffei, G., Lavecchia, R.,?Puglia, D., Dominici, F., Luzi, F., Valente, T. and Torre, L.?2018. Recycling coffee silverskin in sustainable composites?based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Ind. Crop.?Prod. 118: 311-320. 

  23. Sarasini, F., Luzi, F., Dominici, F., Maffei, G., Iannone, A.,?Zuorro, A., Lavecchia, R., Torre, L., Carbonell-Verdu, A.?and Balart, R. 2018. Effect of different compatibilizers on?sustainable composites based on a PHBV/PBAT matrix filled?with coffee silverskin. Polymers. 10: 1256. 

  24. Sypabekova, M., Hagemann, A., Rho, D. and Kim, S. 2023.?Review: 3-aminopropyltriethoxysilane (APTES) deposition?methods on oxide surfaces in solution and vapor phases for?biosensing applications. Biosensors. 13: 36. 

  25. Ghazvini, A.K.A., Ormondroyd, G., Curling, S., Saccani, A.?and Sisti, L. 2022. An investigation on the possible use of?coffee silverskin in PLA/PBS composites. J. Appl. Polym.?Sci. 139: e52264. 

  26. Alghooneh, A., Amini, A.M., Behrouzian, F. and Razavi,?S.M.A. 2017. Characterisation of cellulose from coffee?silverskin. Int. J. Food Prop. 20: 2830-2843. 

  27. Liu, X., Sun, H. and Leng, X. 2023. Coffee silverskin?cellulose-based composite film with natural pigments for?food packaging: physicochemical and sensory abilities.?Foods. 12: 2839. 

  28. Sohn, J.S., Ryu, Y., Yun, C-S., Zhu, K. and Cha, S.W. 2019.?Extrusion compounding process for the development of ecofriendly SCG/PP composite pellets. Sustainability. 11: 1720. 

  29. Marques, M., Goncalves, L.F.F.F., Martins, C.I., Vale, M.?and Duarte, F.M. 2022. Effect of polymer type on the?properties of polypropylene composites with high loads of?spent coffee grounds. Waste Manag. 154: 232-244. 

  30. Essabir, H., Raji, M., Laaziz, S.A., Rodrique, D., Bouhfid,?R. and Qaiss, A.E.K. 2018. Thermo-mechanical performances?of polypropylene biocomposites based on untreated, treated?and compatibilized spent coffee grounds. Compos. B. Eng.?149: 1-11. 

  31. Tan, M.Y., Nicholas Kuan, H.T. and Lee, M.C. 2017.?Characterization of alkaline treatment and fiber content on?the physical, thermal, and mechanical properties of ground?coffee waste/oxobiodegradable HDPE biocomposites. Int. J.?Polym. Sci. 2017: 1-12. 

  32. Moustafa, H., Guizani, C. and Dufresne, A. 2017. Sustainable?biodegradable coffee grounds filler and its effect on the?hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 134: 44498. 

  33. Suaduang, N., Ross, S., Ross, G.M., Pratumshat, S. and?Mahasaranon, S. 2019. Effect of spent coffee grounds filler?on the physical and mechanical properties of poly(lactic acid)?bio-composite films. Mater. Today Proc. 17: 2104-2110. 

  34. Lee, H.J., Lee, H.K., Lim, E. and Song, Y.S. 2015.?Synergistic effect of lignin/polypropylene as a compatibilizer?in multiphase eco-composites. Compos. Sci. Technol. 118:?193-197. 

  35. Wu, C-S. 2015. Renewable resource-based green composites?of surface-treated spent coffee grounds and polylactide:?characterisation and biodegradability. Polym. Degrad. Stab.?121: 51-59. 

  36. Gaidukova, G., Platnieks, O., Aunins, A., Barkane, A.,?Ingrao, C. and Gaidukovs, S. 2021. Spent coffee waste as a?renewable source for the production of sustainable poly?(butylene succinate) biocomposites from a circular economy?perspective. RSC Adv. 11: 18580-18589. 

  37. Wu, C-S. 2017. Modulation of the interface between polyester?and spent coffee grounds in polysaccharide membranes:?preparation, cell proliferation, antioxidant activity and?tyrosinase activity. Mater. Sci. Eng. C. 78: 530-538. 

  38. Mendes, J.F., Martins, J.T., Manrich, A., Sena Neto, A.R.,?Pinheiro, A.C.M., Mattoso, L.H.C. and Martins, M.A. 2019.?Development and physical-chemical properties of pectin film?reinforced with spent coffee grounds by continuous casting.?Carbohydr. Polym. 210: 92-99. 

  39. Xu, H., Sanchez-Salvador, J.L., Balea, A., Blanco, A. and?Negro, C. 2022. Optimization of reagent consumption in?TEMPO-mediated oxidation of Eucalyptus cellulose to?obtain cellulose nanofibers. Cellulose. 29: 6611-6627. 

  40. Oh, H.W. and Lee, S.H. 2022. A study on film manufacturing methods and quality characteristics using coffee byproducts. Food Eng. Prog. 26: 105-111. 

  41. Kanai, N., Honda, T., Yoshihara, N., Yoshihara, N., Oyama,?T., Naito, A., Ueda, K. and Kawamura, I. 2020. Structural?characterization of cellulose nanofibers isolated from spent?coffee grounds and their composite films with poly(vinyl?alcohol): a new non-wood source. Cellulose. 27: 5017-5028. 

  42. Hibbert, S., Welham, K. and Zein, S.H. 2019. An innovative?method of extraction of coffee oil using an advanced?microwave system: in comparison with conventional soxhlet?extraction method. SN Appl. Sci. 1: 1467. 

  43. Williamson, K., Banker, T., Zhao, X., Ortega-Anaya, J.,?Jimenez-Flores, R., Vodovotz, Y. and Hatzakis, E. 2022.?Spent coffee ground oil as a valuable source of epoxides and epoxidation derivatives: quantitation and characterization?using low-field NMR. LWT. 165: 113719. 

  44. Coelho, J.P., Filipe, R.M., Robalo, M.P., Boyadzhieva, S.,?Cholakov, G.S. and Stateva, R.P. 2020. Supercritical CO2?extraction of spent coffee grounds. Influence of co-solvents?and characterization of the extracts. J. Supercrit. Fluids. 161: 104825. 

  45. Ahangari, B. and Sargolzaei, J. 2013. Extraction of lipids?from spent coffee grounds using organic solvents supercritical?carbon dioxide. J. Food Process. Preserv. 37: 1014-1021. 

  46. Mahato, R.P., Kumar, S. and Singh, P. 2023. Production of?polyhydroxyalkanoates from renewable resources: a review?on prospects, challenges and applications. Arch. Microbiol.?205: 172. 

  47. Kang, B-J., Jeon, J-M., Bhatia, S.K., Kim, D-H., Yang, Y-H.,?Jung, S. and Yoon, J-J. 2023. Two-stage bio-hydrogen and?polyhydroxyalkanoate production: upcycling of spent coffee?grounds. Polymers. 15: 681. 

  48. Cruz, M.V., Paiva, A., Lisboa, P., Freitas, F., Alves, V.D.,?Simoes, P., Barreiros, S. and Reis, M.A.M. 2014. Production?of polyhydroxyalkanoates from spent coffee grounds oil obtained?by supercritical fluid extraction technology. Bioresour. Technol.?157: 360-363. 

  49. Ingram, H.R. and Winterburn, J.B. 2021. Anabolism of?poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus?necator DSM 545 from spent coffee grounds oil. N. Biotechnol.?60: 12-19. 

  50. Gama, N., Ferreira, A. and Evtuguin, D.V. 2022. New?poly(lactic acid) composites produced from coffee beverage?wastes. J. Appl. Polym. Sci. 139: 51434. 

  51. Min, S., Ezati, P., Yoon, K.S. and Rhim, J-W. 2023. Gelatin/poly(vinyl alcohol)-based functional films integrated with?spent coffee ground-derived carbon dots and grapefruit seed?extract for active packaging application. Int. J. Biol. Macromol.?231: 123493. 

  52. Drago, E., Pettinato, M., Campardelli, R., Firpo, G., Lertora,?E. and Perego, P. 2022. Zein and spent coffee grounds?extract as a green combination for sustainable food active?packaging production: an investigation on the effects of the?production processes. Appl. Sci. 12: 11311. 

  53. Hong, H.S., Kim, Y., Oh, M.J., Lee, Y.M., Lee, H.J. and?Cha, E.S. 2018. Overview for coffee grounds recycling?technology and future concerns. J. Korea Soc. Waste Manag.?35: 587-599. 

  54. Ministry of Environment. 2018. Framework act on resources?circulation, article 9 (Recognition of circular resources). 16172. 

  55. Ministry of Environment. 2022. Enforcement decree of the?framework act on resources circulation, article 6 (Simplification?of procedures and method for recognizing circular resources). 33186. 

  56. Mayson, S. and Williams, I.D. 2021. Applying a circular?economy approach to valorize spent coffee grounds. Resour.?Conserv. Recycl. 172: 105659. 

  57. Yeoh, L. and Ng, K.S. 2022. Future prospects of spent coffee?ground valorisation using a biorefinery approach. Resour. Conserv.?Recycl. 179: 106123. 

  58. Atabani, A.E., Mahmoud, E., Aslam, M., Naqvi, S.R.,?Juchelkova, D., Bhatia, S.K., Badruddin, I.A., Yunus Khan,?T.M., Hoang, A.T. and Palacky, P. 2023. Emerging potential?of spent coffee ground valorization for fuel pellet production?in a biorefinery. Environ. Dev. Sustain. 25: 7585-7623. 

  59. Woo, D-G., Kim, S.H. and Kim, T.H. 2021. Solid fuel?characteristics of pellets comprising spent coffee grounds and?wood powder. Energies. 14: 371. 

  60. Solomakou, N., Tsafrakidou, P. and Goula, A.M. 2022.?Valorization of SCG through extraction of phenolic compounds?and synthesis of new biosorbent. Sustainability. 14: 9358. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로