$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

광에너지를 활용한 그린 암모니아 생산 핵심기술 및 연구동향 원문보기

태양광발전학회 = Bulletin of the Korea Photovoltaic Society, v.10 no.1, 2024년, pp.32 - 42  

김다솜 (한양대학교 화학공학과) ,  장윤정 (한양대학교 화학공학과)

초록이 없습니다.

참고문헌 (40)

  1. J.G. Chen, R.M. Crooks, L.C. Seefeldt et al., Beyond fossil fuel-driven nitrogen transformations. Science 360(6391), eaar6611 (2018) 

  2. Y.J. Jang, K.S. Choi, Enabling electrochemical N 2 reduction to NH3 in the low overpotential region using non-noble metal Bi electrodes via surface composition modification. J. Mater. Chem. A 8(27), 13842 (2020) 

  3. J. John, D.K. Lee, U. Sim, Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano Converg. 6(1), 15 (2019) 

  4. K. Ithisuphalap, H. Zhang, L. Guo, Q. Yang, H. Yang, G. Wu, Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods 3(6), 1800352 (2019) 

  5. Y.J. Jang, A.E. Lindberg, M.A. Lumley, K.S. Choi, Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes. ACS Energy Lett. 5(6), 1834 (2020) 

  6. G. N. Schrauzer, T. D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99(22), 7189 (1977) 

  7. G. Zhang, X. Yang, C. He, P. Zhang, H. Mi, Constructing a tunable defect structure in TiO 2 for photocatalytic nitrogen fixation. J. Mater. Chem. A 8(1), 334 (2020) 

  8. E. Endoh, J.K. Leland, A.J. Bard, Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide. J. Phys. Chem 90(23), 6223 (1986) 

  9. Q.S. Li, K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic synthesis and photodecomposition of ammonia over SrTiO 3 and BaTiO 3 based catalysts. Chem. Lett. 12(3), 321 (1983) 

  10. Y. Zhao, S. Zhou, J. Zhao, Y. Du, S.X. Dou, Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation. J. Phys. Chem. Lett. 11(21), 9304 (2020) 

  11. L. Yu, Z. Mo, X. Zhu, J. Deng, F. Xu, Y. Song, Y. She, H. Li, and H. Xu, Construction of 2D/2D Z-scheme MnO 2-x /g-C 3 N 4 photocatalyst for efficient nitrogen fixation to ammonia, Green Energy Environ. 6(4), 538 (2020) 

  12. H. Gal, G. Alan, F. Frank A. et al., Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia, ACS Sustainable Chem. Eng. 8(24), 8938 (2020) 

  13. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions (National Association of Corrosion Engineers, Houston, Tex., 1974) 

  14. L. Zhang, H.H. Mohamed, R. Dillert, D. Bahnemann, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J. Photochem. Photobiol. C-Photochem. Rev. 13(4), 263 (2012) 

  15. M.A. Lumley, A. Radmilovic, Y.J. Jang, A.E. Lindberg, K.S. Choi, Perspectives on the development of oxide-based photocathodes for solar fuel production. J. Am. Chem. Soc. 141(46), 18358 (2019) 

  16. C. Lee, H. Kim, Y.J. Jang, Three phase boundary engineering using hydrophilic-hydrophobic poly(Nisopropylacrylamide) with oxygen-vacant TiO 2 photocatalysts for photocatalytic N 2 reduction. ACS Appl. Energy Mater. 5(9), 11018 (2022) 

  17. F. Wu, Y. Yu, H. Yang et al., Simultaneous enhancement of charge separation and hole transportation in a TiO 2 -SrTiO 3 core-shell nanowire photoelectrochemical system. Adv. Mater. 29(28), 1701432 (2017) 

  18. B. Huang, Y. Liu, Q. Pang, X. Zhang, H. Wang, P.K. Shen, Boosting the photocatalytic activity of mesoporous SrTiO 3 for nitrogen fixation through multiple defects and strain engineering. J. Mater. Chem. A 8(42), 22251 (2020) 

  19. Z. Ying, S. Chen, S. Zhang, T. Peng, R. Li, Efficiently enhanced N 2 photofixation performance of sea-urchin-like W 18 O 49 microspheres with Mn-doping. Appl. Catal. B-Environ. 254, 351 (2019) 

  20. P. Huang, W. Liu, Z. He et al., Single atom accelerates ammonia photosynthesis. Sci. China-Chem. 61(9), 1187 (2018) 

  21. S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 6(15), 5884 (2016) 

  22. D.S. Bhachu, S.J.A. Moniz, S. Sathasivam et al., Bismuth oxyhalides: synthesis, structure and photo-electrochemical activity. Chem. Sci. 7(8), 4832 (2016) 

  23. J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Accounts Chem. Res. 50(1), 112 (2017) 

  24. W.L. Huang, Electronic structures and optical properties of BiOX (X F, Cl, Br, I) via DFT calculations. J. Comput. Chem. 30(12), 1882 (2009) 

  25. S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Synthesis of Fe 2 O 3 loaded porous g-C 3 N 4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chem. Eng. J. 373, 572 (2019) 

  26. R. Liu, Z. Chen, Y. Yao, Y. Li, W.A. Cheema, D. Wang, S. Zhu, Recent advancements in g-C 3 N 4 -based photocatalysts for photocatalytic CO 2 reduction: a mini review. RSC Adv. 10(49), 29408 (2020) 

  27. R. Shi, Y. Zhao, G.I.N. Waterhouse, S. Zhang, T. Zhang, Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 9(11), 9739 (2019) 

  28. Y.J. Jang, Y.B. Park, H.E. Kim, Y.H. Choi, S.H. Choi, J.S. Lee, Oxygen-intercalated CuFeO 2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mat. 28(17), 6054 (2016) 

  29. J. Li, D. Wang, R. Guan, Y. Zhang, Z. Zhao, H. Zhai, Z. Sun, Vacancy-enabled mesoporous TiO 2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain. Chem. Eng. 8(49), 18258 (2020) 

  30. Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO 2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 31(16), 1806482 (2019) 

  31. M. Li, H. Huang, J. Low, C. Gao, R. Long, Y. Xiong, Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 3(6), 1800388 (2019) 

  32. X. Xue, R. Chen, H. Chen et al., Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 18(11), 7372 (2018) 

  33. G. Dong, W. Ho, C. Wang, Selective photocatalytic N 2 fixation dependent on g-C 3 N 4 induced by nitrogen vacancies. J. Mater. Chem. A 3(46), 23435 (2015) 

  34. H. Lee, J.-H. Lee, Y. Lee, E.-B. Cho, Y.J. Jang, Boosting solar-driven N 2 to NH 3 conversion using defect-engineered TiO 2 /CuO heterojunction photocatalyst, Applied Surface Science, 620, 156812 (2023) 

  35. G. Zhang, X. Yuan, B. Xie, Y. Meng, Z. Ni, S. Xia, S vacancies act as a bridge to promote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis, Chemical Engineering Journal, 433(3), 133670 (2022) 

  36. S. Liu, Y. Wang, S. Wang, M. You, S. Hong, T.-S. Wu, Y.-L. Soo, Z. Zhao, G. Jiang, B. Wang, Z. Sun, Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO 2 nanosheets. ACS Sustainable Chem. Eng. 7(7), 6813 (2019) 

  37. X. Xue, R. Chen, C. Yan, Y. Hu, W. Zhang, S. Yang, L. Ma, G. Zhu, Z. Jin, Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi 2 MoO 6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 11(21), 10439 (2019) 

  38. S. Choe, S.M. Kim, Y. Lee et al. Rational design of photocatalysts for ammonia production from water and nitrogen gas. Nano Converg. 8(22), (2021) 

  39. S. Liu, M. Wang, H. Ji, L. Zhang, J. Ni, N. Li, T. Qian, C. Yan, J. Lu, Solvent-in-Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. Adv. Mater. 35(14), 2211730 (2023) 

  40. Guan, Y., Wen, H., Cui, K. et al. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nat. Chem. 16, 373-379 (2024) 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로