$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가
Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff 원문보기

한국습지학회지 = Journal of wetlands research, v.26 no.2, 2024년, pp.168 - 181  

(공주대학교 건설환경공학과) ,  (공주대학교 건설환경공학과) ,  오유경 (공주대학교 건설환경공학과) ,  (공주대학교 건설환경공학과) ,  김이형 (공주대학교 스마트인프라공학과)

초록
AI-Helper 아이콘AI-Helper

인공습지는(CW)는 침투, 흡착, 저류, 식물과 미생물의 증발산 등과 같은 수문학적 및 생태학적 기작에 의하여 오염물질 제거, 탄소흡수 및 저장, 생물다양성 향상 등의 생태계서비스를 제공한다. 본 연구는 수평지하흐름 인공습지(HSSF CW)의 미생물 군집과 토양의 물리·화학적 특성 및 처리효율의 상관관계를 분석하기 위하여 수행되었다. 연구를 위한 모니터링은 강우시 수질특성, 토양특성, 미생물 분석이 수행되었다. 따뜻한 계절(>15℃) 에서 TSS, COD, TN, TP 및 중금속(Fe, Zn, Cd) 제거효율이33~74% 범위로 나타났다. 그러나 추운 계절(≤15℃)에서 TOC 35%로 가장 높은 제거 효율이 나타났다. 인공습지 내 토양은 인근에서 채취한 토양의 토양유기탄소(SOC) 함량보다 3.3배 더 높은 함량을 가지고 있는 것으로 나타났다. 유입부와 유출부의 탄소(C), 질소(N)인(P)의 화학양론비(C:N:P)는 각각 120:1.5:1 및 135.2:0.4:1로 나타났으며, 탄소에 비해 질소와 인의 비율이 매우 낮아 미생물 성장에 문제가 발생될 수 있다. 미생물 분석에서는 생물다양성 지수를 통해 미생물 군집의 풍부도, 다양성, 균질성 및 균일성이 따뜻한 계절이 추운 계절에 비해 높게 나타났다. 인공습지의 강우유출수 오염물질 중 질소고정 미생물인 Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes가 우점종으로 미생물 생장을 촉진하는 것으로 평가되었는데 이는 특정 토양특성 및 유입수 특성이 미생물 풍부도와 밀접한 관련이 있음을 의미한다.

Abstract AI-Helper 아이콘AI-Helper

Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retentio...

주제어

표/그림 (9)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • This study aimed to enhance the understanding of the components and interactions that drive treatment processes in CWs, thereby improving the efficiency and sustainability of future CW systems. Specifically, this study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a CW designed for urban runoff treatment, establishing how these interactions contribute to the overall functionality of the system.
본문요약 정보가 도움이 되었나요?

참고문헌 (65)

  1. Abou-Shanab, R. A. E.-A. I. (2011). Bioremediation: New Approaches and Trends. https://doi.org/10.1007/978-94-007-1914-9_3 

  2. Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28-39. 

  3. American Public Health Association (APHA), American Water Works Association(AWWA), and Water Environment Federation (WEF). (1992). Standard Methods for the Examination of Water and Wastewater (eighteenth edition), Greenberg, A. E., Clesceri, L. S., and Eaton, A. D. (Eds.), APHA, AWWA, WEF, Washington, DC. 

  4. Bao, Y., Dolfing, J., Wang, B., Chen, R., Huang, M., Li, Z., ... & Feng, Y. (2019). Bacterial communities involved directly or indirectly in the anaerobic degradation of cellulose. Biology and Fertility of Soils, 55, 201-211. 

  5. Barns, S. M., Takala, S. L., & Kuske, C. R. (1999). Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Applied and environmental microbiology, 65(4), 1731-1737. 

  6. Bengtsson, J., Angelstam, P., Elmqvist, T., Emanuelsson, U., Folke, C., Ihse, M., ... & Nystrom, M. (2003). Reserves, resilience and dynamic landscapes. AMBIO: A Journal of the Human Environment, 32(6), 389-396. 

  7. Boscolo-Galazzo, F., Crichton, K. A., Barker, S., & Pearson, P. N. (2018). Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?. Global and Planetary Change, 170, 201-212. 

  8. Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A., & Thies, J. E. (2006). Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Applied and Environmental Microbiology, 72(7), 4522-4531. 

  9. Cao, Y., Fu, D., Liu, T., Guo, G., & Hu, Z. (2018). Phosphorus solubilizing and releasing bacteria screening from the rhizosphere in a natural wetland. Water, 10(2), 195. 

  10. Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press. 

  11. Choi, J. Y., Maniquiz-Redillas, M. C., Hong, J. S., Lee, S. Y., & Kim, L. H. (2015). Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff. Water Science and Technology, 72(12), 2243-2250. 

  12. Choi, H., Reyes, N. J. D., Jeon, M., & Kim, L. H. (2021). Constructed wetlands in south korea: Current status and performance assessment. Sustainability, 13(18), 10410. 

  13. D'Argenio, V., & Salvatore, F. (2015). The role of the gut microbiome in the healthy adult status. Clinica chimica acta, 451, 97-102. 

  14. Davis, A. P., Shokouhian, M., & Ni, S. (2001). Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 44(5), 997-1009. 

  15. Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., ... & Stein, O. R. (2009). Microbial processes influencing performance of treatment wetlands: a review. Ecological engineering, 35(6), 987-1004. 

  16. Forman, R. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual review of ecology and systematics, 29(1), 207-231. 

  17. Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. Journal of Ecology and Environment, 44(1), 11. 

  18. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., ... & Townshend, J. R. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853. 

  19. Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375. 

  20. Kadlec, R. H., & Reddy, K. R. (2001). Temperature effects in treatment wetlands. Water environment research, 73(5), 543-557. 

  21. Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: mechanisms and impacts. Journal of Chemistry, 2021, 1-17. 

  22. Kim, H. S., Lee, S. H., Jo, H. Y., Finneran, K. T., & Kwon, M. J. (2021). Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Science of the Total Environment, 797, 148944. 

  23. Kim, L. H., Kang, H. M., & Bae, W. (2010). Treatment of particulates and metals from highway stormwater runoff using zeolite filtration. Desalination and Water Treatment, 19(1-3), 97-104. 

  24. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304(5677), 1623-1627. 

  25. Lillesund, V. F., Hagen, D., Michelsen, O., Foldvik, A., & Barton, D. N. (2017). Comparing land use impacts using ecosystem quality, biogenic carbon emissions, and restoration costs in a case study of hydropower plants in Norway. The International Journal of Life Cycle Assessment, 22, 1384-1396. 

  26. Macdonald, C. A., Delgado-Baquerizo, M., Reay, D. S., Hicks, L. C., & Singh, B. K. (2018). Soil nutrients and soil carbon storage: modulators and mechanisms. In Soil carbon storage (pp. 167-205). Academic Press. 

  27. McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., ... & Wittenberg, U. (2001). Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global biogeochemical cycles, 15(1), 183-206. 

  28. Mesquita, M. C., Albuquerque, A., Amaral, L., & Nogueira, R. (2017). Seasonal variation of nutrient removal in a full-scale horizontal constructed wetland. Energy Procedia, 136, 225-232. 

  29. Miller, Gwen, "Limitations on Nitrogen Removal by Treatment Wetlands Under Maritime Climatic Conditions" (2014). SNS Master's Theses. 23. 

  30. Montecchia, M. S., Tosi, M., Soria, M. A., Vogrig, J. A., Sydorenko, O., & Correa, O. S. (2015). Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture. PloS one, 10(3), e0119426. 

  31. Miyashita, N. T. (2015). Contrasting soil bacterial community structure between the phyla Acidobacteria and Proteobacteria in tropical Southeast Asian and temperate Japanese forests. Genes & genetic systems, 90(2), 61-77. 

  32. Ouriache, H., Moumed, I., Arrar, J., Namane, A., Lounici, H., & History, A. (2020). Influence of C/N/P ratio evolution on biodegradation of petroleum hydrocarbons-contaminated soil. Algerian Journal of Environmental Science and Technology December Edition. 

  33. Pinnell, L. J., Reyes, A. A., Wolfe, C. A., Weinroth, M. D., Metcalf, J. L., Delmore, R. J., ... & Engle, T. E. (2022). Bacteroidetes and firmicutes drive differing microbial diversity and community composition among micro-environments in the bovine rumen. Frontiers in Veterinary Science, 9, 897996. 

  34. Reddy, K. R., DeLaune, R. D., & Inglett, P. W. (2022). Biogeochemistry of wetlands: science and applications. CRC press. 

  35. Resende, J. D., Nolasco, M. A., & Pacca, S. A. (2019). Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resources, Conservation and Recycling, 148, 170-177. 

  36. Revitt, D. M., Lundy, L., Coulon, F., & Fairley, M. (2014). The sources, impact and management of car park runoff pollution: a review. Journal of Environmental Management, 146, 552-567. 

  37. Reyes, N. J. D., Geronimo, F. K. F., Choi, H., Jeon, M., & Kim, L. H. (2024). Comprehensive evaluation of soil characteristics and carbon stocks variability in different urban land use types. Environmental Engineering Research, 29(5). 

  38. Sabin, L. D., Lim, J. H., Venezia, M. T., Winer, A. M., Schiff,K. C., & Stolzenbach, K. D. (2006). Dry deposition and resuspension of particle-associated metals near a freeway in Los Angeles. Atmospheric Environment, 40(39), 7528-7538. 

  39. Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of environmental management, 112, 429-448. 

  40. Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423. 

  41. Shannon, C. E. (1997). The mathematical theory of communication. 1963. Md Comput, 14, 306. 

  42. Shigyo, N., Umeki, K., & Hirao, T. (2019). Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Frontiers in microbiology, 10, 1944. 

  43. Shimizu, K. (2016). Metabolic regulation and coordination of the metabolism in bacteria in response to a variety of growth conditions. Bioreactor engineering research and industrial applications I: cell factories, 1-54. 

  44. Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148), 688-688. 

  45. Singh, K., & Chandra, S. (2014). Treatment of petroleum hydrocarbon polluted environment through bio-remediation: a review. Pakistan Journal of Biological Sciences: PJBS, 17(1), 1-8. 

  46. Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., ... & Scholes, M. C. (2015). Bio-geochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, 1(2), 665-685. 

  47. Thukral, A. K. (2017). A review on measurement of Alpha diversity in biology. Agricultural Research Journal, 54(1). 

  48. Tian, Q., Jiang, Y., Tang, Y., Wu, Y., Tang, Z., & Liu, F. (2021). Soil pH and organic carbon properties drive soil bacterial communities in surface and deep layers along an elevational gradient. Frontiers in microbiology, 12, 646124. 

  49. Vijayakumar, S., Thajuddin, N., & Manoharan, C. (2007). Biodiversity of cyanobacteria in industrial effluents. Acta Botanica Malacitana, 32, 27-34. 

  50. Vispo, C., Geronimo, F. K., Jeon, M., & Kim, L. H. (2023). Performance Evaluation of Various Filter Media for Multi-Functional Purposes to Urban Constructed Wetlands. Sustainability, 16(1), 287. 

  51. Vitousek, P. M., & Farrington, H. (1997). Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry, 37, 63-75. 

  52. Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the total environment, 380(1-3), 48-65. 

  53. Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecological engineering, 61, 582-592. 

  54. Wang, Y. P., Zhang, Q., Pitman, A. J., & Dai, Y. (2015). Nitrogen and phosphorous limitation reduces the effects of land use change on land carbon uptake or emission. Environmental Research Letters, 10(1), 014001. 

  55. Wang, J., Long, Y., Yu, G., Wang, G., Zhou, Z., Li, P., ... & Wang, S. (2022). A review on microorganisms in constructed wetlands for typical pollutant removal: species, function, and diversity. Frontiers in Microbiology, 13, 845725. 

  56. Warren, C. R. (2020). Soil microbial populations substitute phospholipids with betaine lipids in response to low P availability. Soil Biology and Biochemistry, 140, 107655. 

  57. Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lutzow, M., Marin-Spiotta, E., ... & Kogel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 333, 149-162. 

  58. Wu, J., Wang, H., Li, G., Ma, W., Wu, J., Gong, Y., & Xu, G. (2020). Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Scientific reports, 10(1), 21271. 

  59. Xu, G., Fan, X., & Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual review of plant biology, 63, 153-182. 

  60. Ying, T. E. N. G., & Wei, C. H. E. N. (2019). Soil microbiomes-a promising strategy for contaminated soil remediation: a review. Pedosphere, 29(3), 283-297. 

  61. Zhang, D., Gersberg, R. M., Ng, W. J., & Tan, S. K. (2017). Conventional and decentralized urban stormwater management: A comparison through case studies of Singapore and Berlin, Germany. Urban Water Journal, 14(2), 113-124. 

  62. Zhao, Y. J., Li, J. H., Wang, Z. F., Yan, C., Wang, S. B., & Zhang, J. B. (2012). Influence of the plant development on microbial diversity of vertical-flow constructed wetlands. Biochemical systematics and ecology, 44, 4-12. 

  63. Zheng, S., Xia, Y., Hu, Y., Chen, X., Rui, Y., Gunina, A., ... & Kuzyakov, Y. (2021). Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 209, 104903. 

  64. Zhou, L., Shen, G., Li, C., Chen, T., Li, S., & Brown, R. (2021). Impacts of land covers on stormwater runoff and urban development: A land use and parcel based regression approach. Land use policy, 103, 105280. 

  65. Zhou, T., Xiang, Y., Liu, S., Shao, Z., Liu, Y., Ma, H., ... & Chai, H. (2023). Insights into simultaneous nitrogen and phosphorus removal in biofilm: The overlooked comammox Nitrospira and the positive role of glycogen-accumulating organisms. Science of the Total Environment, 887, 164130. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로