최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기KSCE Journal of Civil and Environmental Engineering Research = 대한토목학회논문집, v.44 no.4, 2024년, pp.443 - 463
정연지 (경기대학교 토목공학과) , 김민기 (경기대학교 토목공학과) , 엄명진 (경기대학교 사회에너지시스템공학과)
This study sought to improve the accuracy of precipitation prediction by utilizing monthly precipitation data for each region over the past 30 years. Using statistical models (ARIMA, SARIMA) and deep learning models (LSTM, GBM), we learned monthly precipitation data from 1983 to 2012 in Gangneung, G...
YoosefDoost, A., Sadeghian, M. S., NodeFarahani, M. and Rasekhi,?A. (2017). "Comparison between performance of statistical and?low cost ARIMA model with GFDL, CM2. 1 and CGM 3?atmosphere-ocean general circulation models in assessment of?the effects of climate change on temperature and precipitation in?Taleghan Basin." American Journal of Water Resources, Vol. 5, No. 4, pp. 92-99, https://doi.org/10.12691/ajwr-5-4-1.
Choi, I. H., Cha, K. H., Kim, K. M. and Ahn, J.-H. (2023).?"Development of forecasting model for machine learning- based?landfill leachate generation using linear interpolation." Journal of?Korean Society of Environmental Engineers, Vol. 45, No. 1, pp. 11-20, https://doi.org/10.4491/KSEE.2023.45.1.11.
Shenify, M., Danesh, A. S., Gocic, M., Taher, R. S., Abdul Wahab,?A. W., Gani, A., Shamshirband, S. and Petkovic, D. (2016).?"Precipitation estimation using support vector machine with?discrete wavelet transform." Water Resources Management, Vol. 30, pp. 641-652, https://doi.org/10.1007/s11269-015-1182-9.
Yang, C., Zhai, J. and Tao, G. (2020). "Deep learning for price?movement prediction using convolutional neural network and?long short-term memory." Mathematical Problems in Engineering,?Vol. 2020, 2746845, https://doi.org/10.1155/2020/2746845.
Mekanik, F., Imteaz, M. A., Gato-Trinidad, S. and Elmahdi, A.?(2013). "Multiple regression and Artificial Neural Network for?long-term rainfall forecasting using large scale climate modes."?Journal of Hydrology, Vol. 503, pp. 11-21, https://doi.org/10.1016/j.jhydrol.2013.08.035.
Kuligowski, R. J. and Barros, A. P. (1998). "Localized precipitation?forecasts from a numerical weather prediction model using?artificial neural networks." Weather and Forecasting, Vol. 13,?No. 4, pp. 1194-1204, https://doi.org/10.1175/1520-0434(1998)013 2.0.CO;2.
Kashid, S. S. and Maity, R. (2012). "Prediction of monthly rainfall?on homogeneous monsoon regions of India based on large scale?circulation patterns using Genetic Programming." Journal of?Hydrology, Vol. 454-455, pp. 26-41, https://doi.org/10.1016/j.jhydrol.2012.05.033.
Mirza, M. Q., Warrick, R. A., Ericksen, N. J. and Kenny, G. J.?(1998). "Trends and persistence in precipitation in the Ganges,?Brahmaputra and Meghna river basins." Hydrological Sciences?Journal, Vol. 43, No. 6, pp. 845-858, https://doi.org/10.1080/02626669809492182.
Moustris, K. P., Larissi, I. K., Nastos, P. T. and Paliatsos, A. G.?(2011). "Precipitation forecast using artificial neural networks in?specific regions of Greece." Water Resources Management, Vol. 25, pp. 1979-1993, https://doi.org/10.1007/s11269-011-9790-5.
Abbot, J. and Marohasy, J. (2014). "Input selection and optimisation?for monthly rainfall forecasting in Queensland, Australia, using?artificial neural networks." Atmospheric Research, Vol. 138, pp. 166-178, https://doi.org/10.1016/j.atmosres.2013.11.002.
Box, G. E. and Pierce, D. A. (1970). "Distribution of residual?autocorrelations in autoregressive-integrated moving average?time series models." Journal of the American Statistical?Association, Vol. 65, No. 332, pp. 1509-1526, https://doi.org/10.1080/01621459.1970.10481180.
Boorman, D. B. and Sefton, C. E. M. (1997). "Recognising the?uncertainty in the quantification of the effects of climate change?on hydrological response." Climatic Change, Vol. 35, No. 4, pp. 415-434, https://doi.org/10.1023/A:1005372407881.
Venkata Ramana, R., Krishna, B., Kumar, S. R. and Pandey, N. G.?(2013). "Monthly rainfall prediction using wavelet neural?network analysis." Water Resources Management, Vol. 27, pp. 3697-3711, https://doi.org/10.1007/s11269-013-0374-4.
Luk, K. C., Ball, J. E. and Sharma, A. (2001). "An application of?artificial neural networks for rainfall forecasting." Mathematical?and Computer Modelling, Vol. 33, No. 6-7, pp. 683-693, https://doi.org/10.1016/S0895-7177(00)00272-7.
Prudhomme, C., Jakob, D. and Svensson, C. (2003). "Uncertainty?and climate change impact on the flood regime of small UK?catchments." Journal of Hydrology, Vol. 277, No. 1-2, pp. 1-23, https://doi.org/10.1016/S0022-1694(03)00065-9.
Dimri, T., Ahmad, S. and Sharif, M. (2020). "Time series analysis?of climate variables using seasonal ARIMA approach." Journal?of Earth System Science, Vol. 129, pp. 1-16, https://doi.org/10.1007/s12040-020-01408-x.
Aliyu, A. S., Auwal, A. M. and Adenomon, M. O. (2021).?"Application of Sarima Models in Modelling and Forecasting?Monthly Rainfall in Nigeria." Asian Journal of Probability and?Statistics, Vol. 13, No. 3, pp. 30-43.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q.?and Liu, T. Y. (2017). "Lightgbm: A highly efficient gradient?boosting decision tree." Advances in Neural Information?Processing Systems, 30.
Gellens, D. and Roulin, E. (1998). "Streamflow response of Belgian?catchments to IPCC climate change scenarios." Journal of?Hydrology, Vol. 210, No. 1-4, pp. 242-258, https://doi.org/10.1016/S0022-1694(98)00192-9.
Zhang, Y., Zhu, C. and Wang, Q. (2020). "LightGBM-based model?for metro passenger volume forecasting." IET Intelligent Transport?Systems, Vol. 14, No. 13, pp. 1815-1823, https://doi.org/10.1049/iet-its.2020.0396.
Saelthun, N. R. (1998). "Climate Change Impacts on Runoff and Hydropower in the Nordic Countries: Final Report from the Project "Climate Change and Energy Production"." Nordic Council of Ministers.
Dabral, P. P. and Murry, M. Z. (2017). "Modelling and forecasting?of rainfall time series using SARIMA." Environmental Processes,?Vol. 4, No. 2, pp. 399-419, https://doi.org/10.1007/s40710-017-0226-y.
Bari, S. H., Rahman, M. T., Hussain, M. M. and Ray, S. (2015).?"Forecasting monthly precipitation in Sylhet city using ARIMA?model." Civil and Environmental Research, Vol. 7, No. 1, pp. 69-77.
Panagoulia, D. and Dimou, G. (1997). "Sensitivity of flood events?to global climate change." Journal of Hydrology, Vol. 191, No. 1-4, pp. 208-222, https://doi.org/10.1016/S0022-1694(96)03056-9.
Kite, G. W. (1993). "Application of a land class hydrological model?to climatic change." Water Resources Research, Vol. 29, No. 7, pp. 2377-2384, https://doi.org/10.1029/93WR00582.
Lukic, B. (2020). Applied Machine Learning Methods with Long-Short Term Memory Based Recurrent Neural Networks for Multivariate Temperature Prediction.
Naz, S. (2015). "Forecasting daily maximum temperature of Umea." Department of Mathematics and Mathematical Statistics, Umea University Master Thesis.
Meehl, G. A. and Tebaldi, C. (2004). "More intense, more frequent,?and longer lasting heat waves in the 21st century." Science, Vol. 305, No. 5686, pp. 994-997.
Balibey, M. and Turkyilmaz, S. (2015). "A time series approach for?precipitation in Turkey." Gazi University Journal of Science, Vol. 28, No. 4, pp. 549-559.
Box, G. E., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015). Time series analysis: forecasting and control, John Wiley & Sons.
Cortes, C. and Vapnik, V. (1995). "Support-vector networks." Machine?Learning, Vol. 20, pp. 273-297, https://doi.org/10.1007/BF00994018.
Olah, C. (2015). Understanding LSTM networks. https://research.google/pubs/understanding-lstm-networks/
IPCC. (2021). Climate Change 2021: Global Warming of 1.5. IPCC.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.