$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Nonlinear Analysis of Chaotic Dynamics Underlying the Electroencephalogram in Patients with Alzheimer's Disease

Abstract

We investigated the chaotic dynamics underlying the electroencephalogram (EEG) in patients with Alzheimer's disease by nonlinear methods to understand the role of chaos in brain function. In the analysis, we calculated the correlation dimension $D_2$ and the largest Lyapunov exponent $L_1$. A new method, proposed by Kennel et al., for calculating nonlinear invariant measures was used. The method determines the proper minimum embadding dimension by looking at the behavior of nearest neighbors under changes in the embedding dimension d from d to d+1. We showed that it is strikingly faster and more accurate than other algorithms for limited noisy data. We found that, in almost all channels, patients with Alzheimer's disease have significantly lower $D_2$ and $L_1$ than age-approximated non-dimented controls. It is, therefore, inferred that brains injured by Alzheimer's disease have electrophysiologically inactive elements (i.e., neurons and/or synapses) and thus show decreased chaotic behavior. These results support the assumption that chaos plays an important role in brain function, for instance, learning and memory. We suggest that brains can be described by deterministic models. In this paper we show that nonlinear analysis can provide a promising tool for detecting relative changes in the complexity of brain dynamics, which cannot be detected by conventional linear analysis. We propose a nonlinear analysis of the EEG in Alzheimer's disease for diagnosis as a clinical application.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • 원문 PDF 정보가 존재하지 않습니다.

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일