최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Biometrika, v.87 no.4, 2000년, pp.895 - 906
Azzalini, Adelchi , Hall, Peter
Parametric methods are often attractive for small to moderate samples, since, relative to nonparametric techniques, they reduce variability of a wide range of statistical procedures. However, when sample size is small there is often little empirical evidence to support a particular model, and so, while variance can be reduced, bias may be increased. In theory, smoothing can be used to reduce variability of nonparametric procedures, but the difficulty of choosing the smoothing parameter can be a serious drawback. In the present paper we propose an alternative approach. We suggest implicitly smoothing non-parametric distribution estimates by enforcing the same sort of qualitative constraint that parametric methods attempt to reflect. We show theoretically that such a method produces the same order of variance reduction as explicit smoothing, even when the smoothing parameter for the latter is chosen optimally. Furthermore, we demonstrate numerically that imposing qualitative constraints on distribution estimates, and on the nonparametric bootstrap, does in fact produce important reductions in variability for small sample sizes.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.