$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.97 no.25, 2000년, pp.13585 - 13590  

Krappmann, Sven (Institute of Microbiology and Genetics, Georg August University, Grisebachstrasse 8, D-37077 Gö) ,  Lipscomb, William N. (ttingen, Germany) ,  Braus, Gerhard H. (and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138)

Abstract AI-Helper 아이콘AI-Helper

Control of transcription and enzyme activities are two interwoven regulatory systems essential for the function of a metabolic node. Saccharomyces cerevisiae strains differing in enzyme activities at the chorismate branch point of aromatic amino acid biosynthesis were constructed by recombinant DNA...

참고문헌 (37)

  1. The Molecular and Cellular Biology of the Yeast Saccharomyces Hinnebusch A 319 1992 A Hinnebusch The Molecular and Cellular Biology of the Yeast Saccharomyces, eds E W Jones, J R Pringle, J R Broach (Cold Spring Harbor Lab. Press, Plainview, NY) 2, 319-414 (1992). 

  2. Arndt, K, Fink, G R. GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5' TGACTC 3' sequences.. Proceedings of the National Academy of Sciences of the United States of America, vol.83, no.22, 8516-8520.

  3. Braus, G H. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiological reviews, vol.55, no.3, 349-370.

  4. Romero, R.M., Roberts, M.F., Phillipson, J.D.. Chorismate mutase in microorganisms and plants. Phytochemistry, vol.40, no.4, 1015-1025.

  5. Andrews, P. R., Smith, Geoffrey D., Young, I. G.. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate. Biochemistry, vol.12, no.18, 3492-3498.

  6. The Biosynthesis of Aromatic Amino Acids Weiss U 1980 U Weiss, J M Edwards The Biosynthesis of Aromatic Amino Acids (Wiley, New York, 1980). 

  7. Zhang, Sheng, Pohnert, Georg, Kongsaeree, Palangpon, Wilson, David B., Clardy, Jon, Ganem, Bruce. Chorismate Mutase-Prephenate Dehydratase from Escherichia coli. The Journal of biological chemistry, vol.273, no.11, 6248-6253.

  8. Schmidheini, T, Sperisen, P, Paravicini, G, Hütter, R, Braus, G. A single point mutation results in a constitutively activated and feedback-resistant chorismate mutase of Saccharomyces cerevisiae. Journal of bacteriology, vol.171, no.3, 1245-1253.

  9. Schnappauf, Georg, Sträter, Norbert, Lipscomb, William N., Braus, Gerhard H.. A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions. Proceedings of the National Academy of Sciences of the United States of America, vol.94, no.16, 8491-8496.

  10. Schnappauf, Georg, Krappmann, Sven, Braus, Gerhard H.. Tyrosine and Tryptophan Act through the Same Binding Site at the Dimer Interface of Yeast Chorismate Mutase. The Journal of biological chemistry, vol.273, no.27, 17012-17017.

  11. Schmidheini, Tobias, Moesch, Hans Ulrich, Evans, Jeremy N. S., Braus, Gerhard. Yeast allosteric chorismate mutase is locked in the activated state by a single amino acid substitution. Biochemistry, vol.29, no.15, 3660-3668.

  12. Schmidheini, Tobias, Mösch, Hans-Ulrich, Graf, Roney, Braus, Gerhard H.. A GCN4 protein recognition element is not sufficient for GCN4-dependent regulation of transcription in the ARO7 promoter of Saccharomyces cerevisiae. Molecular & general genetics : MGG, vol.224, no.1, 57-64.

  13. Zalkin, H, Paluh, J L, van Cleemput, M, Moye, W S, Yanofsky, C. Nucleotide sequence of Saccharomyces cerevisiae genes TRP2 and TRP3 encoding bifunctional anthranilate synthase: indole-3-glycerol phosphate synthase.. The Journal of biological chemistry, vol.259, no.6, 3985-3992.

  14. Graf, R, Mehmann, B, Braus, G H. Analysis of feedback-resistant anthranilate synthases from Saccharomyces cerevisiae. Journal of bacteriology, vol.175, no.4, 1061-1068.

  15. Hinnebusch, Alan G.. A Hierarchy of trans-Acting Factors Modulates Translation of an Activator of Amino Acid Biosynthetic Genes in Saccharomyces cerevisiae. Molecular and cellular biology, vol.5, no.9, 2349-2360.

  16. 10.1016/0076-6879(87)54076-9 

  17. Miozzari, Giuseppe, Niederberger, Peter, H�tter, Ralf. Action of tryptophan analogues in Saccharomyces cerevisiae. Archives of microbiology, vol.115, no.3, 307-316.

  18. Methods Enzymol Guthrie C 15 194 1991 C Guthrie, G R Fink Methods Enzymol 194, 15 (1991). 

  19. Woodcock, D M, Crowther, P J, Doherty, J, Jefferson, S, DeCruz, E, Noyer-Weidner, M, Smith, S S, Michael, M Z, Graham, M W. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants.. Nucleic acids research, vol.17, no.9, 3469-3478.

  20. 10.1002/(SICI)1097-0061(199602)12:2<129::AID-YEA891>3.0.CO;2-O 

  21. Rose, M.D., Novick, P., Thomas, J.H., Botstein, D., Fink, G.R.. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene, vol.60, no.2, 237-243.

  22. Mueller, P.P., Hinnebusch, A.G.. Multiple upstream AUG codons mediate translational control of GCN4. Cell, vol.45, no.2, 201-207.

  23. Inoue, H., Nojima, H., Okayama, H.. High efficiency transformation of Escherichia coli with plasmids. Gene, vol.96, no.1, 23-28.

  24. BioTechniques Elble R 18 13 1992 R Elble BioTechniques 13, 18-20 (1992). 

  25. Hoffman, C.S., Winston, F.. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene, vol.57, no.2, 267-272.

  26. Southern, E.M.. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of molecular biology, vol.98, no.3, 503-517.

  27. Bio/Technology Saiki R K 476 24 1992 R K Saiki, S Scharf, F Faloona, K B Mullis, G T Horn, H A Erlich, N Arnheim Bio/Technology 24, 476-480 (1992). 

  28. Cross, F.R., Tinkelenberg, A.H.. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell, vol.65, no.5, 875-883.

  29. Rave, N, Crkvenjakov, R, Boedtker, H. Identification of procollagen mRNAs transferred to diazobenzyloxymethyl paper from formaldehyde agarose gels.. Nucleic acids research, vol.6, no.11, 3559-3567.

  30. Heiner, Cheryl R., Hunkapiller, Kathryn L., Chen, Shiaw-Min, Glass, John I., Chen, Ellson Y.. Sequencing Multimegabase-Template DNA with BigDye Terminator Chemistry. Genome research, vol.8, no.5, 557-561.

  31. Egan, A. F., Gibson, F.. Anthranilate synthase/anthranilate 5-phosphoribosyl 1-pyrophosphate phosphoribosyltransferase from Aerobacter aerogenes. The Biochemical journal, vol.130, no.3, 847-859.

  32. Methods of Microbiology Herbert D 209 1971 D Herbert, P J Phipps, R E Strange Methods of Microbiology, eds J R Norris, D W Ribbons (Academic, New York) 5B, 209-344 (1971). 

  33. Bradford, Marion M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, vol.72, 248-254.

  34. Graf, R, Dubaquié, Y, Braus, G H. Modulation of the allosteric equilibrium of yeast chorismate mutase by variation of a single amino acid residue. Journal of bacteriology, vol.177, no.6, 1645-1648.

  35. Krappmann, Sven, Helmstaedt, Kerstin, Gerstberger, Thomas, Eckert, Sabine, Hoffmann, Bernd, Hoppert, Michael, Schnappauf, Georg, Braus, Gerhard H.. The aroC Gene of Aspergillus nidulansCodes for a Monofunctional, Allosterically Regulated Chorismate Mutase. The Journal of biological chemistry, vol.274, no.32, 22275-22282.

  36. Krappmann, Sven, Pries, Ralph, Gellissen, Gerd, Hiller, Mark, Braus, Gerhard H.. HARO7 Encodes Chorismate Mutase of the Methylotrophic Yeast Hansenula polymorpha and Is Derepressed upon Methanol Utilization. Journal of bacteriology, vol.182, no.15, 4188-4197.

  37. Sträter, Norbert, Schnappauf, Georg, Braus, Gerhard, Lipscomb, William N. Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures. Structure, vol.5, no.11, 1437-1452.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로