최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Science, v.290 no.5497 = no.5497, 2000년, pp.1756 - 1758
Voigt, Christiane (Max-Planck-Institut fü) , Schreiner, Jochen (r Kernphysik, Division of Atmospheric Physics, Post Office Box 103 980, D-69029 Heidelberg, Germany.) , Kohlmann, Andreas (Max-Planck-Institut fü) , Zink, Peter (r Kernphysik, Division of Atmospheric Physics, Post Office Box 103 980, D-69029 Heidelberg, Germany.) , Mauersberger, Konrad (Max-Planck-Institut fü) , Larsen, Niels (r Kernphysik, Division of Atmospheric Physics, Post Office Box 103 980, D-69029 Heidelberg, Germany.) , Deshler, Terry (Max-Planck-Institut fü) , Kröger, Chris (r Kernphysik, Division of Atmospheric Physics, Post Office Box 103 980, D-69029 Heidelberg, Germany.) , Rosen, Jim (Max-Planck-Institut fü) , Adriani, Alberto (r Kernphysik, Division of Atmospheric Physics, Post Office Box 103 980, D-69029 Heidelberg, Germany.) , Cairo, Francesco (Division of Middle Atmosphere Research, Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark.) , Donfrancesco, Guido Di (Department of Atmospheric Science, University of Wyoming, Post Office Box 3038, Laramie, WY 82071, USA.) , Viterbini, Maurizio (Department of Atmospheric Science, University of Wyoming, Post Office Box 3038, Laramie, WY 82071, USA.) , Ovarlez, Joelle (Departmen) , Ovarlez, Henri , David, Christine , Dörnbrack, Andreas
A comprehensive investigation of polar stratospheric clouds was performed on 25 January 2000 with instruments onboard a balloon gondola flown from Kiruna, Sweden. Cloud layers were repeatedly encountered at altitudes between 20 and 24 kilometers over a wide range of atmospheric temperatures (185 to ...
World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion: 1998 Report 44 (Global Ozone Research and Monitoring Project Geneva 1999).
Solomon, Susan. Stratospheric ozone depletion: A review of concepts and history. Reviews of geophysics, vol.37, no.3, 275-316.
J. Geophys. Res Pawson S. 14209 104 1999 10.1029/1999JD900211 Pawson S., Naujokat B., J. Geophys. Res 104, 14209 (1999).
Geophys. Res. Lett. Poole L. R. 21 15 1988 10.1029/GL015i001p00021 Poole L. R., McCormick M. P., Geophys. Res. Lett. 15, 21 (1988).
Geophys. Res. Lett. Poole L. R. 867 15 1988 10.1029/GL015i008p00867 Poole L. R., Osborn M. T., Hunt W. H., Geophys. Res. Lett. 15, 867 (1988).
10.1029/JD094iD09p11299 D. Fahey et al. J. Geophys. Res. 94 11299 (1989).
Nature Crutzen P. J. 651 324 1986 10.1038/324651a0 Crutzen P. J., Arnold F., Nature 324, 651 (1986).
Toon, Owen B., Hamill, Patrick, Turco, Richard P., Pinto, Joseph. Condensation of HNO3 and HCl in the winter polar stratospheres. Geophysical research letters, vol.13, no.12, 1284-1287.
Hanson, David, Mauersberger, Konrad. Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere. Geophysical research letters, vol.15, no.8, 855-858.
J. Geophys. Res. Tabazadeh A. 12897 99 1994 10.1029/94JD00820 Tabazadeh A., Turco R. P., Jacobson M. Z., J. Geophys. Res. 99, 12897 (1994).
Geophys. Res. Lett. Beyerle G. 57 21 1994 10.1029/93GL02846 Beyerle G., Neuber R., Schrems O., Wittrock F., Knudsen B., Geophys. Res. Lett. 21, 57 (1994).
Geophys. Res. Lett. Carslaw K. S. 2479 21 1994 10.1029/94GL02799 Carslaw K. S., et al., Geophys. Res. Lett. 21, 2479 (1994).
J. Geophys. Res. Iraci L. 8491 103 1998 10.1029/98JD00281 Iraci L., Fortin A. T. J., Tolbert M. A., J. Geophys. Res. 103, 8491 (1998).
Schreiner, Jochen, Voigt, Christiane, Kohlmann, Andreas, Arnold, Frank, Mauersberger, Konrad, Larsen, Niels. Chemical Analysis of Polar Stratospheric Cloud Particles. Science, vol.283, no.5404, 968-970.
10.1029/1999JD900910 N. Larsen et al. J. Geophys. Res. 105 1491 (2000).
C. Voigt et al. Geophys. Res. Lett. in press.
Aerosol Sci. Technol. Schreiner J. 373 31 1999 10.1080/027868299304093 Schreiner J., Schild U., Voigt C., Mauersberger K., Aerosol Sci. Technol. 31, 373 (1999).
J. Geophys. Res. Hofmann D. J. 2897 96 1991 10.1029/90JD02494 Hofmann D. J., Deshler T., J. Geophys. Res. 96, 2897 (1991).
Deshler, Terry, Oltmans, Samuel J.. Vertical profiles of Volcanic Aerosol and Polar Stratospheric Clouds Above Kiruna, Sweden: Winters 1993 and 1995. Journal of atmospheric chemistry, vol.30, no.1, 11-23.
Appl. Opt. Rosen J. M. 1552 30 1991 10.1364/AO.30.001552 Rosen J. M., Kjome N. T., Appl. Opt. 30, 1552 (1991).
A. Adriani et al. in Proceedings of XVIII Quadrennial Ozone Symposium L'Aquila 1996 Atmospheric Ozone R. D. Bojkov G. Visconti Eds. (Edigrafital for Parco Scientifico e Tecnologico d'Abruzzo L'Aquila Italy 1998) vol. 2 pp. 879-882.
10.1029/93GL02438 J. Ovarlez H. Ovarlez Geophys. Res. Lett. 21 13 1235 (1994).
The mass spectrometer sensitivities for water and nitric acid have been calibrated through the introduction of known partial pressures of these substances into the particle evaporation sphere by means of a pressure-related dynamic expansion. The mole flux to the mass spectrometer can then be related to the count rate.
The selection of the integration period was guided by the measurements of the backscatter sondes and by the mass spectrometer signals of H 2 O and HNO 3 (Fig. 2). The actual period selected for the integration is not very critical; for example integration in a cloud layer for 100 s did not change the molar ratio beyond the uncertainties shown in Fig. 3. The beginning and the end of a cloud encounter were always well resolved.
The total particle volume was calculated from a bimodal log-normal fit to the particle size distribution measured with the particle counter. STS particles (e.g. centered around 75 100 s UT) resulted in distributions of particles with a median diameter of 0.14 μm (standard deviation σ = 1.85) and a number density of 15 cm −3 and for the second mode in diameters of 1.08 μm (σ = 1.55) and number density of 0.01 cm −3 . NAT particles (e.g. near 79 650 s UT) resulted in a median diameter of 0.13 μm (σ = 1.50) and a density of 16 cm −3 and in a diameter of 1.52 μm (σ = 1.45) and a density of 0.5 cm −3 .
Although no direct HNO 3 gas phase measurement was performed a mixing ratio of 10 ppb is reasonable [
Geophys. Res. Lett. Spreng S. 1251 21 1994 10.1029/93GL03229 Spreng S., Arnold F., Geophys. Res. Lett. 21, 1251 (1994);
]. Departures of 2.5 ppb will change T NAT by less than 0.5 K.
One of us (N.L.) calculated the evaporation times of NAT particles assuming a 1 K temperature increase: The time for a 50% volume reduction is 2 hours for a particle of radius 1.0 μm and 1 day for a particle of radius 5.0 μm.
Nature Stolarski R. 788 389 1997 10.1038/39737 Stolarski R., Nature 389, 788 (1997).
Geophys. Res. Lett. Newman P. A. 2689 24 1997 10.1029/97GL52831 Newman P. A., Gleason J. G., McPeters R. D., Solarski R. S., Geophys. Res. Lett. 24, 2689 (1997).
10.1038/35589 K. S. Carslaw et al. Nature 391 675 (1998).
J. Geophys. Res. Carslaw K. S. 5785 103 1998 10.1029/97JD03626 Carslaw K. S., et al., J. Geophys. Res. 103, 5785 (1998).
J. Geophys. Res. Deshler T. 3943 105 2000 10.1029/1999JD900469 Deshler T., et al., J. Geophys. Res. 105, 3943 (2000).
Annu. Rev. Phys. Chem. Peter T. 785 48 1997 10.1146/annurev.physchem.48.1.785 Peter T., Annu. Rev. Phys. Chem. 48, 785 (1997).
The balloon flight was performed as part of the European-American THESEO-2000/SOLVE campaign in winter 1999/2000. The excellent support through the balloon launch team of the Centre National d'Etudes Spatiales (CNES) is acknowledged. Supported by the Commission of the European Union through the Environmental and Climate program (contract ENV4-CT97-0523) and by NSF grants OPP-9707520 and OPP-9423285 (T.D. C.K. and J.R.).
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.