$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] SENSITIVITY OF SPECIES HABITAT-RELATIONSHIP MODEL PERFORMANCE TO FACTORS OF SCALE 원문보기

Ecological applications : a publication of the Ecological Society of America, v.10 no.6, 2000년, pp.1690 - 1705  

Karl, J. W. ,  Heglund, P. J. ,  Garton, E. O. ,  Scott, J. M. ,  Wright, N. M. ,  Hutto, R. L.

Abstract

Researchers have come to different conclusions about the usefulness of habitat-relationship models for predicting species presence or absence. This difference frequently stems from a failure to recognize the effects of spatial scales at which the models are applied. We examined the effects of model complexity, spatial data resolution, and scale of application on the performance of bird habitat relationship (BHR) models on the Craig Mountain Wildlife Management Area and on the Idaho portion of the U.S. Forest Service's Northern Region. We constructed and tested BHR models for 60 bird species detected on the study areas. The models varied by three levels of complexity (amount of habitat information) and three spatial data resolutions (0.09 ha, 4 ha, 10 ha). We tested these models at two levels of analysis: the site level (a homogeneous area <0.5 ha) and cover-type level (an aggregation of many similar sites of a similar land-cover type), using correspondence between model predictions and species detections to calculate kappa coefficients of agreement. Model performance initially increased as models became more complex until a point was reached where omission errors increased at a rate greater than the rate at which commission errors were decreasing. Heterogeneity of the study areas appeared to influence the effect of model complexity. Changes in model complexity resulted in a greater decrease in commission error than increase in omission error. The effect of spatial data resolution on the performance of BHR models was influenced by the variability of the study area. BHR models performed better at cover-type levels of analysis than at the site level for both study areas. Correct-presence estimates (1 - minus percentage omission error) decreased slightly as number of species detections increased on each study area. Correct-absence estimates (1 - percentage commission error) increased as number of species detections increased on each study area. This suggests that a large number of detections may be necessary to achieve reliable estimates of model accuracy.

참고문헌 (22)

  1. M. L. Avery, and C. VanRiper III .1990 .Evaluation of wildlife-habitat relationships database for predicting bird community composition in central California chaparral and blue oak woodlands .California Fish and Game, 76 :103 -117 . 

  2. W. M. Block, M. L. Morrison, J. Verner, and P. N. Manley .1994 .Assessing wildlife-habitat-relationships models: a case study with California oak woodlands .Wildlife Society Bulletin, 22 :549 -561 . 

  3. Boone, Randall B., Krohn, William B.. MODELING THE OCCURRENCE OF BIRD SPECIES: ARE THE ERRORS PREDICTABLE?. Ecological applications : a publication of the Ecological Society of America, vol.9, no.3, 835-848.

  4. Cohen, Jacob. A Coefficient of Agreement for Nominal Scales. Educational and psychological measurement, vol.20, no.1, 37-46.

  5. Cohen, Jacob. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit.. Psychological bulletin, vol.70, no.4, 213-220.

  6. Congalton, R.G.. A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, vol.37, no.1, 35-46.

  7. Davis, Frank W.. The Nature of Gap Analysis. Bioscience, vol.46, no.2, 74-75.

  8. Edwards, Thomas C.. Data Defensibility and Gap Analysis. Bioscience, vol.46, no.2, 75-77.

  9. Edwards Jr., Thomas C., Deshler, Elena T., Foster, Dan, Moisen, Gretchen G.. Adequacy of Wildlife Habitat Relation Models for Estimating Spatial Distributions of Terrestrial Vertebrates. Conservation biology : the journal of the Society for Conservation Biology, vol.10, no.1, 263-270.

  10. Fleiss, Joseph L., Cohen, Jacob, Everitt, B. S.. Large sample standard errors of kappa and weighted kappa.. Psychological bulletin, vol.72, no.5, 323-327.

  11. Fretwell, Stephen Dewitt, Lucas Jr., Henry L.. On territorial behavior and other factors influencing habitat distribution in birds : I. Theoretical development. Acta biotheoretica, vol.19, no.1, 16-36.

  12. W. D. Hudson, and C. W. Ramm .1987 .Correct formulation of the kappa coefficient of agreement .Photogrammetric Engineering and Remote Sensing, 53 :421 -422 . 

  13. D. H. Johnson, and J. W. Grier .1988 .Determinants of breeding distributions of ducks .Wildlife Monographs Number, 100 :1 -37 . 

  14. Nichols, James D., Boulinier, Thierry, Hines, James E., Pollock, Kenneth H., Sauer, John R.. Inference Methods for Spatial Variation in Species Richness and Community Composition When Not All Species Are Detected. Conservation biology : the journal of the Society for Conservation Biology, vol.12, no.6, 1390-1398.

  15. Reynolds, R. T., Scott, J. M., Nussbaum, R. A.. A Variable Circular-Plot Method for Estimating Bird Numbers. The Condor, vol.82, no.3, 309-.

  16. G. H. Rosenfield, and K. Fitzpatrick-Lins .1986 .A coefficient of agreement as a measure of thematic classification accuracy .Photogrammetric Engineering and Remote Sensing, 52 :223 -227 . 

  17. J. M. Scott, F. Davis, B. Csuti, R. Noss, B. Butterfield, C. Groves, H. Anderson, S. Caicco, F. D'erchia, T. C. Edwards, J. Ulliman, and G. Wright .1993 .Gap analysis: a geographic approach to protection of biological diversity .Wildlife Monographs Number, 123 . 

  18. Scott, J. Michael, Jennings, M., Wright, R. G., Csuti, B.. Landscape Approaches to Mapping Biodiversity. Bioscience, vol.46, no.2, 77-78.

  19. Short, Henry L., Hestbeck, Jay B.. National Biotic Resource Inventories and GAP Analysis. Bioscience, vol.45, no.8, 535-539.

  20. D. M. Stoms, 1992 .Effects of habitat map generalization in biodiversity assessment .Photogrammetric Engineering and Remote Sensing, 58 :1587 -1591 . 

  21. van Belle, Gerald, Hughes, James P.. Nonparametric Tests for Trend in Water Quality. Water resources research, vol.20, no.1, 127-136.

  22. WHITTAKER, R. H.. GRADIENT ANALYSIS OF VEGETATION*. Biological reviews of the Cambridge Philosophical Society, vol.42, no.2, 207-264.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로