최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of computational and applied mathematics, v.125 no.1/2, 2000년, pp.41 - 56
Borovykh, N. (Mathematical Institute, University of Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands) , Spijker, M.N. (Corresponding author. Tel.: +071-527-2727)
AbstractWe deal with the problem of establishing upper bounds for the norm of the nth power of square matrices. This problem is of central importance in the stability analysis of numerical methods for solving (linear) initial value problems for ordinary, partial or delay differential equations. A re...
BIT Barwell 15 130 1975 10.1007/BF01932685 Special stability problems for functional differential equations
F.F. Bonsall, J. Duncan, Numerical ranges, in: R.G. Bartle (Ed.), Studies in Functional Analysis, The Mathematical Association of America, 1980, pp. 1-49.
10.1080/01630560008816964 N. Borovykh, D. Drissi, M.N. Spijker, A note about Ritt's condition, related resolvent conditions and power bounded operators, Numer. Funct. Anal. Optim., in press.
Linear Algebra Appl. Borovykh 311 161 2000 10.1016/S0024-3795(00)00085-9 The sharpness of stability estimates corresponding to a general resolvent condition
Acta Numer. van Dorsselaer 1993 199 1993 10.1017/S0962492900002361 Linear stability analysis in the numerical solution of initial value problems
SIAM J. Math. Anal. Friedland 12 826 1981 10.1137/0512068 A generalization of the Kreiss matrix theorem
Hairer 1991 Solving Ordinary Differential Equations
Horn 1990 Matrix Analysis
BIT Kraaijevanger 34 113 1994 10.1007/BF01935020 Two counterexamples related to the Kreiss matrix theorem
BIT Kreiss 2 153 1962 10.1007/BF01957330 Uber die Stabilitatsdefinition fur Differenzengleichungen die partielle Differentialgleichungen approximieren
Linear Algebra Appl. Lenferink 140 251 1990 10.1016/0024-3795(90)90232-2 A generalization of the numerical range of a matrix
BIT LeVeque 24 584 1984 10.1007/BF01934916 On the resolvent condition in the Kreiss matrix theorem
BIT Lubich 31 293 1991 10.1007/BF01931289 On resolvent conditions and stability estimates
10.4064/-38-1-247-264 O. Nevanlinna, On the growth of the resolvent operators for power bounded operators, in: J. Janas, F.H. Szafraniec, J. Zemanek (Eds.), Linear Operators, Banach Center Publications, vol. 38, Inst. Math. Pol. Acad. Sciences, Warszawa, 1997, pp. 247-264.
Math. Comp. Palencia 64 591 1995 10.1090/S0025-5718-1995-1277770-2 Stability of rational multistep approximations of holomorphic semigroups
Numer. Math. Parter 4 277 1962 10.1007/BF01386319 Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem
Numer. Math. Reddy 62 235 1992 10.1007/BF01396228 Stability of the method of lines
Richtmyer 1967 Difference Methods for Initial-Value Problems
Rudin 1973 Functional Analysis
BIT Spijker 31 551 1991 10.1007/BF01933268 On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem
Appl. Numer. Math. Spijker 24 233 1997 10.1016/S0168-9274(97)00023-8 Numerical stability, resolvent conditions and delay differential equations
Linear Algebra Appl. Spijker 239 77 1996 10.1016/S0024-3795(96)90004-X Stability estimates for families of matrices of nonuniformly bounded order
BIT Spijker 37 442 1997 10.1007/BF02510222 Error growth analysis, via stability regions, for discretizations of initial value problems
10.1090/S0025-5718-02-01472-2 M.N. Spijker, S. Tracogna, B.D. Welfert, About the sharpness of the stability estimates in the Kreiss matrix theorem, Math. Comp., in press.
Strikwerda 1989 Finite Difference Schemes and Partial Differential Equations
10.4064/-38-1-339-360 J.C. Strikwerda, B.A. Wade, A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, in: J. Janas, F.H. Szafraniec, J. Zemanek (Eds.), Linear Operators, Banach Center Publications, vol. 38, Inst. Math. Pol. Acad. Sciences, Warszawa, 1997, pp. 329-360.
Linear Algebra Appl. Tadmor 41 151 1981 10.1016/0024-3795(81)90095-1 The equivalence of L2-stability, the resolvent condition, and strict H-stability
Linear Algebra Appl. Tadmor 80 250 1986 The resolvent condition and uniform power boundedness
K.C. Toh, L.N. Trefethen, The Kreiss matrix theorem on a general complex domain, Report no. 97/13, Oxford Univ. Comp. Lab, 1997.
SIAM J. Numer. Anal. Watanabe 22 132 1985 10.1137/0722010 The stability of difference formulas for delay differential equations
Amer. Math. Monthly Wegert 101 132 1994 10.2307/2324361 From the Buffon needle problem to the Kreiss matrix theorem
Numer. Math. Zennaro 49 305 1986 10.1007/BF01389632 P-stability properties of Runge-Kutta methods for delay differential equations
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.