$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Hydraulic characterization and upscaling of fracture networks based on multiple‐scale well test data 원문보기

Water resources research, v.36 no.12, 2000년, pp.3481 - 3497  

Niemi, Auli ,  Kontio, Kimmo ,  Kuusela‐Lahtinen, Auli ,  Poteri, Antti

Abstract AI-Helper 아이콘AI-Helper

Hydraulic properties and upscaling characteristics of low‐permeability fractured rock are analyzed based on systematic well test data from three different measurement scales. First, tests are simulated in a large number of geological fracture network realizations, and the acceptable fracture ...

참고문헌 (46)

  1. Baecher G. B. N. A.Lanney H. H.Einstein Statistical description of rock properties and sampling Proceedings of the 18th U.S. Symposium on Rock Mechanics 5C1-5C8Johnson Boulder Colo. 1978. 

  2. Water Resour. Res. Cacas M. C. 479 26 3 1990 Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation, 1, The flow model 

  3. 10.1016/B978-0-12-083980-3.50008-5 

  4. Cvetkovic, Vladimir D.. Mass arrival of reactive solute in single fractures. Water resources research, vol.27, no.2, 177-183.

  5. CVETKOVIC, V., SELROOS, J. O., CHENG, H.. Transport of reactive tracers in rock fractures. Journal of fluid mechanics, vol.378, 335-356.

  6. Quantitative Hydrogeology Marsily G. 1986 

  7. Dershowitz W. P.Wallmann S.Kindred Discrete fracture modeling for the Stripa site characterisation and validation drift inflow predictionsStripa Proj. Tech. Rep. 91‐16Swed. Nucl. Power and Waste Manage. Co. Stockholm 1991. 

  8. Fracman Interactive Discrete Feature Data Analysis, Geometric Modeling and Exploration Simulation: User Documentation, Version 2.5 Dershowitz W. 1996 

  9. Dershowitz W. A.Thomas R.Busse Discrete fracture analysis in support of the Äspö tracer retention understanding experiment (TRUE‐1)Äspölab. Int. Co‐op. Rep. 96‐05 129Swed. Nucl. Power and Waste Manage. Co. Stockholm 1996b. 

  10. Englund E. A.Sparks GEO‐EAS 1.2.1 user's guideEPA Rep. 600/8‐91/008Environ. Prot. Agency Las Vegas Nev. 1991. 

  11. Follin, S., Thunvik, R.. On the use of continuum approximations for regional modeling of groundwater flow through crystalline rocks. Advances in water resources, vol.17, no.3, 133-145.

  12. Gavrilenko, Pierre, Guéguen, Yves. flow in fractured media: A modified renormalization method. Water resources research, vol.34, no.2, 177-191.

  13. Gómez‐Hernández, J. Jaime, Gorelick, Steven M.. Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance, and recharge. Water resources research, vol.25, no.3, 405-419.

  14. Hakami E. Aperture distribution of rock fractures doctoral thesis Div. of Eng. Geol. R. Inst. of Technol. Stockholm 1995. 

  15. Herbert A. J. A.Gale G.Lanyon R.MacLeod Modeling for the Stripa site characterization and validation drift inflow: Prediction of flow through fractured rockSKB Rep. 91‐35Swed. Nucl. Power and Waste Manage. Co. Stockholm 1991. 

  16. Hinkkanen H. H.Ahokas P.Rouhiainen Detailed hydrogeological characterization of a site: Means to understand the distribution of groundwater fluxin Proceedings of an International Conference on Deep Geological Disposal of Radioactive WasteLac du Bonnet LeaderLac du Bonnet Manitoba Canada 1996. 

  17. Nonsteady flow to a well of constant drawdown in an extensive aquifer. Transactions : American Geophysical Union, vol.33, no.4, 559-569.

  18. Mining Geostatistics Journel A. G. 1978 

  19. La Pointe P. R. P.Wallmann S.Follin Estimation of effective block conductivities based on discrete network analyses using data from the Aspo siteSKB Tech. Rep. 95‐15Swed. Nucl. Power and Waste Manage. Co. Stockholm 1995. 

  20. 10.2172/7256719 Long J. A.Mauldon K.Nelson S.Martel P.Fuller K.Karasaki Prediction of flow and drawdown for the site characterization and validation site in the Stripa mineStripa Proj. Tech. Rep. 92‐05Swed. Nucl. Power and Waste Manage. Co. Stockholm 1992. 

  21. Long, J. C. S., Remer, J. S., Wilson, C. R., Witherspoon, P. A.. Porous media equivalents for networks of discontinuous fractures. Water resources research, vol.18, no.3, 645-658.

  22. Statistics of Directional Data Mardia K. V. 1972 

  23. MAFIC Matrix/ Fracture Interaction Code With Solute Transport: User Documentation, Version 1.5 Miller I. 1995 

  24. 10.4135/9781412983532 

  25. Moreno, Luis, Tsang, Chin‐Fu, Tsang, Yvonne, Neretnieks, Ivars. Some anomalous features of flow and solute transport arising from fracture aperture variability. Water resources research, vol.26, no.10, 2377-2391.

  26. Civ. Eng. Trans. Am. Inst. Eng. Moye D. G. 95 1967 Drilling for foundation exploration 

  27. Rock Fractures and Fluid Flow: Contemporary Understandings and Applications National Research Council (NRC) 1996 

  28. Neuman S. P. Stochastic continuum presentation of fractured rock permeability as an alternative to the REV and fracture network concepts Proceedings of the 28th U.S. Symposium on Rock MechanicsI. W.Farmer et al. 533-561A. A. Balkema Brookfield Vt. 1987. 

  29. Neuman, S.P., Depner, J.S.. Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona. Journal of hydrology, vol.102, no.1, 475-501.

  30. Niemi A. Modeling flow in fractured medium-Uncertainty analysis with stochastic continuum approach VTT Publ. 184 188 Tech. Res. Cent. of Finland Espoo 1994. 

  31. Hydrol. Sel. Pap. Selected Papers on Environmental Hydrogeology From the 29th International Geological Congress (I. G. C), Kyoto, Japan, 1992 Niemi A. 121 1993 

  32. Niemi A. K.Kontio A.Kuusela‐Lahtinen T.Vaittinen Estimation of block conductivities from hydrologically calibrated fracture networks-Description of the methodology and application to Romuvaara investigation areaPosiva Tech. Rep. 99‐19 70Posiva Oy Helsinki 1999. 

  33. Osnes J. D. A.Winberg J.Andersson Analysis of well test data-Application of probabilistic models to infer hydraulic properties of fracturesTop. Rep. RSI‐0338RESPEC Rapid City S. D. 1988. 

  34. Painter, S., Cvetkovic, V., Selroos, J.-O.. Transport and retention in fractured rock: Consequences of a power-law distribution for fracture lengths. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, vol.57, no.6, 6917-6922.

  35. Poteri A. M.Laitinen Fracture network model of the groundwater flow in the Romuvaara sitePosiva Tech. Rep. 96‐26 53Posiva Oy Helsinki 1997. 

  36. Rouhiainen P. A case history of the difference flow measurement at the Hästholmen site in Loviisa Proceedings From the 3rd Äspö International Seminar Oskarshamn June 10-12 1998SKB Tech. Rep. TR‐98‐10Swed. Nucl. Fuel and Waste Manage. Co. Stockholm 1998. 

  37. Rouhiainen P. P.Heikkinen Difference flow measurements at the Palmottu site in boreholes R387‐R388 The Palmottu Natural Analogue ProjectPosiva Res. and Dev. Rep. 98‐06Finn. Nucl. Waste Manage. Co. Helsinki 1998. 

  38. Rouhiainen P. P.Heikkinen Difference flow measurements in boreholes KA2563A and KA2511A at the ÄSPÖ Hard Rock Laboratory Äspö Hard Rock Laboratory TRUE Block Scale ProjectInt. Tech. Doc. ITD‐99‐11Swed. Nucl. Fuel and Waste Manage. Co. Stockholm 1999. 

  39. Tsang, Chin‐Fu, Neretnieks, Ivars. Flow channeling in heterogeneous fractured rocks. Reviews of geophysics, vol.36, no.2, 275-298.

  40. Tsang, C. F., Tsang, Y. W., Hale, F. V.. Tracer Transport in Fractures: Analysis of Field Data Based on a Variable‐Aperture Channel Model. Water resources research, vol.27, no.12, 3095-3106.

  41. Tsang, Y. W.. Usage of “Equivalent apertures” for rock fractures as derived from hydraulic and tracer tests. Water resources research, vol.28, no.5, 1451-1455.

  42. Tsang, Y. W., Tsang, C. F., Hale, F. V., Dverstorp, B.. Tracer transport in a stochastic continuum model of fractured media. Water resources research, vol.32, no.10, 3077-3092.

  43. Uchida M. T.Doe W.Dershowitz A.Thomas P.Wallman A.Sawada Discrete‐fracture modeling of the Äspö LPT‐2 large‐scale pumping and tracer testSKB Int. Co‐op. Rep. 94‐09Swed. Nucl. Power and Waste Manage. Co. Stockholm 1994. 

  44. 10.2118/7984-PA Uraiet A. A. R.Raghavan Unsteady flow to a well producing at constant pressure 1813-1823JPT J. Pet. Technol.October 1980. 

  45. First TRUE stage-tracer retention understanding experiments: Descriptive structural‐hydraulic models on block and detailed scales of the TRUE‐1 siteA.Winberg SKB Int. Co‐op. Rep. 96‐04Swed. Nucl. Power and Waste Manage. Co. Stockholm 1996. 

  46. Witherspoon, P. A., Wang, J. S. Y., Iwai, K., Gale, J. E.. Validity of Cubic Law for fluid flow in a deformable rock fracture. Water resources research, vol.16, no.6, 1016-1024.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로