The structures of three R(6) human insulin hexamers have been determined. Crystals of monoclinic m-cresol-insulin, monoclinic resorcinol-insulin and rhombohedral m-cresol-insulin diffracted to 1. 9, 1.9 and 1.78 A, respectively, and have been refined to residuals of 0.195, 0.179 and 0.200, respectiv...
The structures of three R(6) human insulin hexamers have been determined. Crystals of monoclinic m-cresol-insulin, monoclinic resorcinol-insulin and rhombohedral m-cresol-insulin diffracted to 1. 9, 1.9 and 1.78 A, respectively, and have been refined to residuals of 0.195, 0.179 and 0.200, respectively. In all three structures, a phenolic derivative is found to occupy the phenolic binding site, where it forms hydrogen bonds to the carbonyl O atom of CysA6 and the N atom of CysA11. Two additional phenolic derivative binding sites were identified within or between hexamers. The structures of all three hexamers are nearly identical, although a large displacement of the N-terminus of one B chain in both monoclinic structures results from coordination to a sodium ion which is located between symmetry-related hexamers. Other minor differences in structure arise from differences in packing in the monoclinic cell compared with the rhombohedral cell. Based upon the differences in conformation of the GluB13 side chains in T(6), T(3)R(f)(3) and R(6) hexamers, the deprotonation of these side chains appears to be associated with the T-->R conformational transition.
The structures of three R(6) human insulin hexamers have been determined. Crystals of monoclinic m-cresol-insulin, monoclinic resorcinol-insulin and rhombohedral m-cresol-insulin diffracted to 1. 9, 1.9 and 1.78 A, respectively, and have been refined to residuals of 0.195, 0.179 and 0.200, respectively. In all three structures, a phenolic derivative is found to occupy the phenolic binding site, where it forms hydrogen bonds to the carbonyl O atom of CysA6 and the N atom of CysA11. Two additional phenolic derivative binding sites were identified within or between hexamers. The structures of all three hexamers are nearly identical, although a large displacement of the N-terminus of one B chain in both monoclinic structures results from coordination to a sodium ion which is located between symmetry-related hexamers. Other minor differences in structure arise from differences in packing in the monoclinic cell compared with the rhombohedral cell. Based upon the differences in conformation of the GluB13 side chains in T(6), T(3)R(f)(3) and R(6) hexamers, the deprotonation of these side chains appears to be associated with the T-->R conformational transition.
이 논문을 인용한 문헌
활용도 분석정보
상세보기
다운로드
내보내기
활용도 Top5 논문
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다. 더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.