최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of molecular sciences, v.21 no.10, 2020년, pp.3455 -
Sim, Hyuna (Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) , Lee, Joo-Eun (hyunasim@kribb.re.kr (H.S.)) , Yoo, Hee Min (jooeunlee@kribb.re.kr (J.-E.L.)) , Cho, Sunwha (swcho@kribb.re.kr (S.C.)) , Lee, Hana (hnlee@kribb.re.kr (H.L.)) , Baek, Aruem (areumbaek@kribb.re.kr (A.B.)) , Kim, Jisun (jeonyj@kribb.re.kr (Y.-J.J.)) , Seo, Hyemyung (Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) , Kweon, Mi-Na (hyunasim@kribb.re.kr (H.S.)) , Kim, Hyung Gun (jooeunlee@kribb.re.kr (J.-E.L.)) , Jeon, Young-Joo (swcho@kribb.re.kr (S.C.)) , Son, Mi-Young (hnlee@kribb.re.kr (H.L.)) , Kim, Janghwan (areumbaek@kribb.re.kr (A.B.))
The diagnosis of Parkinson’s disease (PD) is initiated after the occurrence of motor symptoms, such as resting tremors, rigidity, and bradykinesia. According to previous reports, non-motor symptoms, notably gastrointestinal dysfunction, could potentially be early biomarkers in PD patients as s...
1. Kalia L.V. Lang A.E. Parkinson’s disease Lancet 2015 386 896 912 10.1016/S0140-6736(14)61393-3 25904081
2. Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.E. Lang A.E. Parkinson disease Nat. Rev. Dis. Prim. 2017 3 1 21 10.1038/nrdp.2017.13 28332488
3. Nalls M.A. Pankratz N. Lill C.M. Do C.B. Hernandez D.G. Saad M. Destefano A.L. Kara E. Bras J. Sharma M. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease Nat. Genet. 2014 46 989 993 10.1038/ng.3043 25064009
4. Chang D. Nalls M.A. Hallgrimsdottir I.B. Hunkapiller J. van der Brug M. Cai F. Kerchner G.A. Ayalon G. Bingol B. Sheng M. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci Nat. Genet. 2017 49 1511 1516 10.1038/ng.3955 28892059
5. Berg D. In vivo detection of iron and neuromelanin by transcranial sonography - A new approach for early detection of substantia nigra damage J. Neural Transm. 2006 113 775 780 10.1007/s00702-005-0447-5 16755382
6. Goldman J.G. Postuma R. Premotor and nonmotor features of Parkinson’s disease Curr. Opin. Neurol. 2014 27 434 441 10.1097/WCO.0000000000000112 24978368
7. Poewe W. Non-motor symptoms in Parkinson’s disease Eur. J. Neurol. 2008 15 14 20 10.1111/j.1468-1331.2008.02056.x 18353132
8. Chen H. Zhao E.J. Zhang W. Lu Y. Liu R. Huang X. Ciesielski-Jones A.J. Justice M.A. Cousins D.S. Peddada S. Meta-analyses on prevalence of selected Parkinson’s nonmotor symptoms before and after diagnosis Transl. Neurodegener. 2015 4 1 10.1186/2047-9158-4-1 25671103
9. Lin C.H. Lin J.W. Liu Y.C. Chang C.H. Wu R.M. Risk of Parkinson’s disease following severe constipation: A nationwide population-based cohort study Park. Relat. Disord. 2014 20 1371 1375 10.1016/j.parkreldis.2014.09.026
10. Abbott R.D. Frequency of bowel movements and future risk of Parkinson’s disease Neurology 2001 57 456 462 10.1212/WNL.57.3.456 11502913
11. Hilton D. Stephens M. Kirk L. Edwards P. Potter R. Zajicek J. Broughton E. Hagan H. Carroll C. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease Acta Neuropathol. 2014 127 235 241 10.1007/s00401-013-1214-6 24240814
12. Svensson E. Horvath-Puho E. Thomsen R.W. Djurhuus J.C. Pedersen L. Borghammer P. Sørensen H.T. Vagotomy and subsequent risk of Parkinson’s disease Ann. Neurol. 2015 78 522 529 10.1002/ana.24448 26031848
13. Liu B. Fang F. Pedersen N.L. Tillander A. Ludvigsson J.F. Ekbom A. Svenningsson P. Chen H. Wirdefeldt K. Vagotomy and Parkinson disease Neurology 2017 88 1996 2002 10.1212/WNL.0000000000003961 28446653
14. Cookson M.R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease Nat. Rev. Neurosci. 2010 11 791 797 10.1038/nrn2935 21088684
15. Di Maio R. Hoffman E.K. Rocha E.M. Keeney M.T. Sanders L.H. De Miranda B.R. Zharikov A. Van Laar A. Stepan A.F. Lanz T.A. LRRK2 activation in idiopathic Parkinson’s disease Sci. Transl. Med. 2018 10 1 13 10.1126/scitranslmed.aar5429
16. Hui K.Y. Fernandez-Hernandez H. Hu J. Schaffner A. Pankratz N. Hsu N.Y. Chuang L.S. Carmi S. Villaverde N. Li X. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease Sci. Transl. Med. 2018 10 10.1126/scitranslmed.aai7795
17. Son M.Y. Sim H. Son Y.S. Jung K.B. Lee M.O. Oh J.H. Chung S.K. Jung C.R. Kim J. Distinctive genomic signature of neural and intestinal organoids from familial Parkinson’s disease patient-derived induced pluripotent stem cells Neuropathol. Appl. Neurobiol. 2017 43 584 603 10.1111/nan.12396 28235153
18. Han K.A. Shin W.H. Jung S. Seol W. Seo H. Ko C.M. Chung K.C. Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation Hum. Mol. Genet. 2017 26 1 18 10.1093/hmg/ddw363 27798112
19. Holmqvist S. Chutna O. Bousset L. Aldrin-Kirk P. Li W. Bjorklund T. Wang Z.Y. Roybon L. Melki R. Li J.Y. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats Acta Neuropathol. 2014 128 805 820 10.1007/s00401-014-1343-6 25296989
20. Aasly J.O. Toft M. Fernandez-Mata I. Kachergus J. Hulihan M. White L.R. Farrer M. Clinical features of LRRK2-associated Parkinson’s disease in Central Norway Ann. Neurol. 2005 57 762 765 10.1002/ana.20456 15852371
21. Kay D.M. Zabetian C.P. Factor S.A. Nut J.G. Samii A. Griffith A. Brid T.D. Kramer P. Higgins D.S. Payami H. Parkinson’s disease and LRRK2: Frequency of a common mutation in U.S. movement disorder clinics Mov. Disord. 2006 21 519 523 10.1002/mds.20751 16250030
22. Goldwurm S. Zini M. Di Fonzo A. De Gaspari D. Siri C. Simons E.J. van Doeselaar M. Tesei S. Antonini A. Canesi M. LRRK2 G2019S mutation and Parkinson’s disease: A clinical, neuropsychological and neuropsychiatric study in a large Italian sample Park. Relat. Disord. 2006 12 410 419 10.1016/j.parkreldis.2006.04.001 16750929
23. Adams J.R. Van Netten H. Schulzer M. Mak E. Mckenzie J. Strongosky A. Sossi V. Ruth T.J. Lee C.S. Farrer M. PET in LRRK2 mutations: Comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation Brain 2005 128 2777 2785 10.1093/brain/awh607 16081470
24. Jackson E.L. Lu H. Three-dimensional models for studying development and disease: Moving on from organisms to organs-on-a-chip and organoids Integr. Biol. 2016 8 672 683 10.1039/C6IB00039H
25. Seok J. Warren H.S. Cuenca A.G. Mindrinos M.N. Baker H.V. Xu W. Richards D.R. Mcdonald-Smith G.P. Gao H. Hennessy L. Genomic responses in mouse models poorly mimic human inflammatory diseases, and the Inflammation and Host Response to Injury, Large Scale Collaborative Research Program 4 Proc. Natl. Acad. Sci. USA 2013 110 3507 3512 10.1073/pnas.1222878110 23401516
26. Potashkin J.A. Blume S.R. Runkle N.K. Limitations of animal models of Parkinson’s disease Parkinsons. Dis. 2011 2011 10.4061/2011/658083
27. Xu H. Jiao Y. Qin S. Zhao W. Chu Q. Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine Exp. Hematol. Oncol. 2018 7 1 12 10.1186/s40164-018-0122-9 29344432
28. Horvath P. Aulner N. Bickle M. Davies A.M. Del Nery E. Ebner D. Montoya M.C. Ostling P. Pietiainen V. Price L.S. Screening out irrelevant cell-based models of disease Nat. Rev. Drug Discov. 2016 15 751 769 10.1038/nrd.2016.175 27616293
29. Fatehullah A. Tan S.H. Barker N. Organoids as an in vitro model of human development and disease Nat. Cell Biol. 2016 18 246 254 10.1038/ncb3312 26911908
30. Waterston R.H. Lindblad-Toh K. Birney E. Rogers J. Abril J.F. Agarwal P. Agarwala R. Ainscough R. Alexandersson M. An P. Initial sequencing and comparative analysis of the mouse genome Nature 2002 420 520 562 12466850
31. Bichler Z. Lim H.C. Zeng L. Tan E.K. Non-Motor and Motor Features in LRRK2 Transgenic Mice PLoS ONE 2013 8 10.1371/journal.pone.0070249 23936174
32. Maekawa T. Tsushima H. Kawakami F. Kawashima R. Kodo M. Imai M. Ichikawa T. Leucine-rich repeat kinase 2 is associated with activation of the paraventricular nucleus of the hypothalamus and stress-related gastrointestinal dysmotility Front. Neurosci. 2019 13 1 10 10.3389/fnins.2019.00905 30740042
33. Kim S. Kwon S.H. Kam T.I. Panicker N. Karuppagounder S.S. Lee S. Lee J.H. Kim W.R. Kook M. Foss C.A. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease Neuron 2019 103 627 641.e7 10.1016/j.neuron.2019.05.035 31255487
34. Matsumoto K. Nishihara S. Kamimura M. Shiraishi T. Otoguro T. Uehara M. Maeda Y. Ogura K. Lumsden A. Ogura T. The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation Nat. Neurosci. 2004 7 605 612 10.1038/nn1249 15133517
35. Itoh M. Kudoh T. Dedekian M. Kim C.H. Chitnis A.B. A role for iro1 and iro7 in the establishment of an anteposterior compartment of the ectoderm adjacent to the midbrain-hindbrain boundary Development 2002 129 2317 2327 11973265
36. Agarwal P. Cheng C.W. Kabir M.G. Chan T.Y. Thanabalasingham V. Zhang X. Cohen D.R. Husain M. Cheng S.H. Bruneau B.G. The Iroquois Homeobox Gene Irx2 Is Not Essential for Normal Development of the Heart and Midbrain-Hindbrain Boundary in Mice Me Mol. Cell. Biol. 2003 23 8216 8225 14585979
37. De La Calle-Mustienes E. Feijoo C.G. Manzanares M. Tena J.J. Rodriguez-Seguel E. Letizia A. Allende M.L. Gomez-Skarmeta J.L. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts Genome Res. 2005 15 1061 1072 10.1101/gr.4004805 16024824
38. Bosse A. Zulch A. Becker M.B. Torres M. Gomez-Skarmeta J.L. Modolell J. Gruss P. Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system Mech. Dev. 1997 69 169 181 10.1016/S0925-4773(97)00165-2 9486539
39. Coetzee S.G. Pierce S. Brundin P. Brundin L. Hazelett D.J. Coetzee G.A. Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson’s disease etiology Sci. Rep. 2016 6 1 11 10.1038/srep30509 28442746
40. Mariani E. Frabetti F. Tarozzi A. Pelleri M.C. Pizzetti F. Casadei R. Meta-analysis of Parkinson’s disease transcriptome data using TRAM software: Whole substantia nigra tissue and single dopamine neuron differential gene expression PLoS ONE 2016 11 1 21 10.1371/journal.pone.0161567
41. Steger M. Tonelli F. Ito G. Davies P. Trost M. Vetter M. Wachter S. Lorentzen E. Duddy G. Wilson S. Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases: (A) Experimental setup of PS1. LRRK2-G2019SGSK mouse embryonic fibroblasts (MEFs, n = 5) were treated with DMSO or each of two structurally distinct LRRK2 inh Elife 2016 5 1 28
42. Fedele S. Collo G. Behr K. Bischofberger J. Muller S. Kunath T. Christensen K. Gundner A.L. Graf M. Jagasia R. Expansion of human midbrain floor plate progenitors from induced pluripotent stem cells increases dopaminergic neuron differentiation potential Sci. Rep. 2017 7 1 11 10.1038/s41598-017-05633-1 28127051
43. Liu G.H. Qu J. Suzuki K. Nivet E. Li M. Montserrat N. Yi F. Xu X. Ruiz S. Zhang W. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2 Nature 2012 491 603 607 10.1038/nature11557 23075850
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.