$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Metabolic and Lipidomic Profiling of Vegetable Juices Fermented with Various Probiotics 원문보기

Biomolecules, v.10 no.5, 2020년, pp.725 -   

Chung, Hyuk-Jin (College of Pharmacy, Chung-Ang University, Seoul 06974, Korea) ,  Lee, Hwanhui (hjchung0812@gmail.com (H.-J.C.)) ,  Na, Guknam (hwanhui56@gmail.com (H.L.)) ,  Jung, Heechul (College of Pharmacy, Chung-Ang University, Seoul 06974, Korea) ,  Kim, Dong-Gun (hjchung0812@gmail.com (H.-J.C.)) ,  Shin, Sang-Ick (hwanhui56@gmail.com (H.L.)) ,  Jung, Seong-Eun (Korea Yakult Co., Ltd., Yongin 17086, Korea) ,  Choi, Il-dong (biongn@re.yakult.co.kr (G.N.)) ,  Lee, Jae-Hwan (yk58jhc@re.yakult.co.kr (H.J.)) ,  Sim, Jae-Hun (kimdg@re.yakult.co.kr (D.-G.K.)) ,  Choi, Hyung-Kyoon (muse123@re.yakult.co.kr (S.-I.S.))

Abstract AI-Helper 아이콘AI-Helper

Fermented vegetable juices have gained attention due to their various beneficial effects on human health. In this study, we employed gas chromatography–mass spectrometry, direct infusion-mass spectrometry, and liquid chromatography–mass spectrometry to identify useful metabolites, lipi...

주제어

참고문헌 (77)

  1. 1. FAO/WHO Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food Guidelines for the Evaluation of Probiotics in Food FAO/WHO London, ON, Canada 2002 

  2. 2. Kechagia M. Basoulis D. Konstantopoulou S. Dimitriadi D. Gyftopoulou K. Skarmoutsou N. Fakiri E.M. Health benefits of probiotics: A review ISRN Nutr. 2013 10.5402/2013/481651 

  3. 3. Marco M.L. Heeney D. Binda S. Cifelli C.J. Cotter P.D. Foligne B. Ganzle M. Kort R. Pasin G. Pihlanto A. Health benefits of fermented foods: Microbiota and beyond Curr. Opin. Biotechnol. 2017 44 94 102 10.1016/j.copbio.2016.11.010 27998788 

  4. 4. Khalesi S. Bellissimo N. Vandelanotte C. Williams S. Stanley D. Irwin C. A review of probiotic supplementation in healthy adults: Helpful or hype? Eur. J. Clin. Nutr. 2019 73 24 37 10.1038/s41430-018-0135-9 29581563 

  5. 5. Henning S.M. Yang J. Shao P. Lee R.P. Huang J. Ly A. Hsu M. Lu Q.Y. Thames G. Heber D. Health benefit of vegetable/fruit juice-based diet: Role of microbiome Sci. Rep. 2017 7 2167 10.1038/s41598-017-02200-6 28526852 

  6. 6. Havas P. Kun S. Styevko G. Slaanac V. Hardi J. Rezessy-Szabo J. Fruit and vegetable juice fermentation with bifidobacteria Acta Alimentaria 2014 43 64 72 10.1556/Aalim.2014.4444 

  7. 7. Alissa E.M. Ferns G.A. Dietary fruits and vegetables and cardiovascular diseases risk Crit. Rev. Food Sci. Nutr. 2017 57 1950 1962 10.1080/10408398.2015.1040487 26192884 

  8. 8. Kosewski G. Gorna I. Boleslawska I. Kowalowka M. Wieckowska B. Glowka A.K. Morawska A. Jakubowski K. Dobrzynska M. Miszczuk P. Comparison of antioxidative properties of raw vegetables and thermally processed ones using the conventional and sous-vide methods Food Chem. 2018 240 1092 1096 10.1016/j.foodchem.2017.08.048 28946228 

  9. 9. Imran M. Rauf A. Abu-Izneid T. Nadeem M. Shariati M.A. Khan I.A. Imran A. Orhan I.E. Rizwan M. Atif M. Luteolin, a flavonoid, as an anticancer agent: A review Biomed. Pharmacother. 2019 112 108612 10.1016/j.biopha.2019.108612 30798142 

  10. 10. Di Cagno R. Coda R. De Angelis M. Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation Food Microbiol. 2013 33 1 10 10.1016/j.fm.2012.09.003 23122495 

  11. 11. Swain M.R. Anandharaj M. Ray R.C. Parveen Rani R. Fermented fruits and vegetables of Asia: A potential source of probiotics Biotechnol. Res. Int. 2014 10.1155/2014/250424 

  12. 12. Corona O. Randazzo W. Miceli A. Guarcello R. Francesca N. Erten H. Moschetti G. Settanni L. Characterization of kefir-like beverages produced from vegetable juices LWT Food Sci. Technol. 2016 66 572 581 10.1016/j.lwt.2015.11.014 

  13. 13. Kim S.Y. Production of fermented kale juices with Lactobacillus strains and nutritional composition Prev. Nutr. Food Sci. 2017 22 231 236 29043222 

  14. 14. Tomita S. Saito K. Nakamura T. Sekiyama Y. Kikuchi J. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice PLoS ONE 2017 12 e0182229 10.1371/journal.pone.0182229 28759594 

  15. 15. Yang K. Xu M. Zhong F. Zhu J. Rapid differentiation of Lactobacillus species via metabolic profiling J. Microbiol. Methods 2018 154 147 155 10.1016/j.mimet.2018.10.013 30359661 

  16. 16. Filannino P. Cardinali G. Rizzello C.G. Buchin S. De Angelis M. Gobbetti M. Di Cagno R. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices Appl. Environ. Microbiol. 2014 80 2206 2215 10.1128/AEM.03885-13 24487533 

  17. 17. Tomita S. Nakamura T. Okada S. NMR- and GC/MS-based metabolomic characterization of sunki , an unsalted fermented pickle of turnip leaves Food Chem. 2018 258 25 34 10.1016/j.foodchem.2018.03.038 29655730 

  18. 18. Park S.E. Seo S.H. Lee K.I. Na C.S. Son H.S. Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry J. Ginseng Res. 2018 42 57 67 10.1016/j.jgr.2016.12.010 29348723 

  19. 19. Chemat F. Rombaut N. Sicaire A.G. Meullemiestre A. Fabiano-Tixier A.S. Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review Ultrason. Sonochem. 2017 34 540 560 10.1016/j.ultsonch.2016.06.035 27773280 

  20. 20. Kim J.Y. Kim H.Y. Jeon J.Y. Kim D.M. Zhou Y. Lee J.S. Lee H. Choi H.K. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture PLoS ONE 2017 12 e0187622 10.1371/journal.pone.0187622 29099862 

  21. 21. Matyash V. Liebisch G. Kurzchalia T.V. Shevchenko A. Schwudke D. Lipid extraction by methyl- tert -butyl ether for high-throughput lipidomics J. Lipid Res. 2008 49 1137 1146 10.1194/jlr.D700041-JLR200 18281723 

  22. 22. Kim S.H. Lim S.R. Hong S.J. Cho B.K. Lee H. Lee C.G. Choi H.K. Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris J. Agric. Food Chem. 2016 64 4807 4816 10.1021/acs.jafc.6b00541 27213977 

  23. 23. Kind T. Liu K.H. Lee D.Y. DeFelice B. Meissen J.K. Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification Nat. Methods 2013 10 755 758 10.1038/nmeth.2551 23817071 

  24. 24. Available online: http://www.lipidmaps.org/ (accessed on 24 October 2018) 

  25. 25. Bohoyo-Gil D. Dominguez-Valhondo D. Garcia-Parra J. Gonzalez-Gomez D. UHPLC as a suitable methodology for the analysis of carotenoids in food matrix Eur. Food Res. Technol. 2012 235 1055 1061 10.1007/s00217-012-1838-0 

  26. 26. Kim S.H. Liu K.H. Lee S.Y. Hong S.J. Cho B.K. Lee H. Lee C.G. Choi H.K. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture PLoS ONE 2013 8 e72415 10.1371/journal.pone.0072415 24039760 

  27. 27. Available online: http://www.metaboanalyst.ca (accessed on 24 October 2018) 

  28. 28. Desjardins M.-L. Roy D. Goulet J. Growth of bifidobacteria and their enzyme profiles J. Dairy Sci. 1990 73 299 307 10.3168/jds.S0022-0302(90)78673-0 

  29. 29. Premi L. Sandine W.E. Elliker P.R. Lactose-hydrolyzing enzymes of Lactobacillus species Appl. Microbiol. 1972 24 51 57 10.1128/AEM.24.1.51-57.1972 5057373 

  30. 30. Caspritz G. Radler F. Malolactic enzyme of Lactobacillus plantarum . Purification, properties, and distribution among bacteria J. Biol. Chem. 1983 258 4907 4910 6833282 

  31. 31. Pham P.L. Dupont I. Roy D. Lapointe G. Cerning J. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation Appl. Environ. Microbiol. 2000 66 2302 2310 10.1128/AEM.66.6.2302-2310.2000 10831403 

  32. 32. Degeest B. Janssens B. De Vuyst L. Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0?1: Production kinetics, enzyme activities and EPS yields J. Appl. Microbiol. 2001 91 470 477 10.1046/j.1365-2672.2001.01404.x 11556912 

  33. 33. Palasz A. Ciez D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity and applications Eur. J. Med. Chem. 2015 97 582 611 10.1016/j.ejmech.2014.10.008 25306174 

  34. 34. Elli M. Zink R. Rytz A. Reniero R. Morelli L. Iron requirement of Lactobacillus spp. in completely chemically defined growth media J. Appl. Microbiol. 2000 88 695 703 10.1046/j.1365-2672.2000.01013.x 10792529 

  35. 35. Das G. Patra J.K. Lee S.Y. Kim C. Park J.G. Baek K.H. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry PLoS ONE 2017 12 e0181280 10.1371/journal.pone.0181280 28704842 

  36. 36. Ha E.M. Escherichia coli -derived uracil increases the antibacterial activity and growth rate of Lactobacillus plantarum J. Microbiol. Biotechnol. 2016 26 975 987 10.4014/jmb.1601.01063 27012237 

  37. 37. Liu Y.Y. Zeng S.Y. Leu Y.L. Tsai T.Y. Antihypertensive effect of a combination of uracil and glycerol derived from Lactobacillus plantarum strain TWK10-fermented soy milk J. Agric. Food Chem. 2015 63 7333 7342 10.1021/acs.jafc.5b01649 26266546 

  38. 38. Olson K.C. Sun D. Chen G. Sharma A.K. Amin S. Ropson I.J. Spratt T.E. Lazarus P. Characterization of dibenzo[ a,l ]pyrene- trans -11,12-diol(dibenzo[ def,p ]chrysene) glucuronidation by UDP-glucuronosyltransferases Chem. Res. Toxicol. 2011 24 1549 1559 10.1021/tx200178v 21780761 

  39. 39. Kim S.R. Jung Y.R. An H.J. Kim D.H. Jang E.J. Choi Y.J. Moon K.M. Park M.H. Park C.H. Chung K.W. Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-kB signaling PLoS ONE 2013 8 e73877 24066081 

  40. 40. Zimin Y.S. Borisova N. Timerbaeva G. Gimadieva A. Mustafin A. Preparation, toxicity, and anti-inflammatory activity of complexes of uracil derivatives with polyfunctional acids Pharm. Chem. J. 2017 50 649 653 10.1007/s11094-017-1507-5 

  41. 41. Kim J.-E. Chae C.S. Kim G.-C. Hwang W. Hwang J.-S. Hwang S.-M. Kim Y. Ahn Y.-T. Park S.-G. Jun C.-D. Lactobacillus helveticus suppresses experimental rheumatoid arthritis by reducing inflammatory T cell responses J. Funct. Foods 2015 13 350 362 10.1016/j.jff.2015.01.002 

  42. 42. Joo H.M. Kim K.A. Myoung K.S. Ahn Y.T. Lee J.H. Huh C.S. Han M.J. Kim D.H. Lactobacillus helveticus HY7801 ameliorates vulvovaginal candidiasis in mice by inhibiting fungal growth and NF-κB activation Int. Immunopharmacol. 2012 14 39 46 10.1016/j.intimp.2012.05.023 22735758 

  43. 43. Hong Y.S. Ahn Y.T. Park J.C. Lee J.H. Lee H. Huh C.S. Kim D.H. Ryu D.H. Hwang G.S. 1 H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model Arch. Pharm. Res. 2010 33 1091 1101 10.1007/s12272-010-0716-1 20661720 

  44. 44. Song H. Lee S.Y. Production of succinic acid by bacterial fermentation Enzyme Microb. Technol. 2006 39 352 361 10.1016/j.enzmictec.2005.11.043 

  45. 45. Zeikus J. Jain M. Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products Appl. Microbiol. Biotechnol. 1999 51 545 552 10.1007/s002530051431 

  46. 46. Dudley E.G. Steele J.L. Succinate production and citrate catabolism by Cheddar cheese nonstarter lactobacilli J. Appl. Microbiol. 2005 98 14 23 10.1111/j.1365-2672.2004.02440.x 15610413 

  47. 47. Hillier A.J. The metabolism of [ 14 C]bicarbonate by Streptococcus lactis : The synthesis of succinic acid J. Dairy Res. 1978 45 423 431 10.1017/S0022029900016642 711956 

  48. 48. Van der Meulen R. Adriany T. Verbrugghe K. De Vuyst L. Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD + through its growth-associated production Appl. Environ. Microbiol. 2006 72 5204 5210 10.1128/AEM.00146-06 16885266 

  49. 49. Giorgi-Coll S. Amaral A.I. Hutchinson P.J.A. Kotter M.R. Carpenter K.L.H. Succinate supplementation improves metabolic performance of mixed glial cell cultures with mitochondrial dysfunction Sci. Rep. 2017 7 1003 10.1038/s41598-017-01149-w 28432362 

  50. 50. Jalloh I. Helmy A. Howe D.J. Shannon R.J. Grice P. Mason A. Gallagher C.N. Stovell M.G. van der Heide S. Murphy M.P. Focally perfused succinate potentiates brain metabolism in head injury patients J. Cereb. Blood Flow Metab. 2017 37 2626 2638 10.1177/0271678X16672665 27798266 

  51. 51. Iplik E.S. Catmakas T. Cakmakoglu B. A new target for the treatment of endometrium cancer by succinic acid Cell Mol. Biol. 2018 64 60 63 10.14715/cmb/2018.64.1.11 

  52. 52. Zarubina I.V. Lukk M.V. Shabanov P.D. Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate-containing antihypoxants Bull. Exp. Biol. Med. 2012 153 336 339 10.1007/s10517-012-1709-5 22866305 

  53. 53. Carman G.M. Henry S.A. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae J. Biol. Chem. 2007 282 37293 37297 10.1074/jbc.R700038200 17981800 

  54. 54. Henry S.A. Kohlwein S.D. Carman G.M. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae Genetics 2012 190 317 349 10.1534/genetics.111.130286 22345606 

  55. 55. Chi Z. Kohlwein S. Paltauf F. Role of phosphatidylinositol (PI) in ethanol production and ethanol tolerance by a high ethanol producing yeast J. Ind. Microbiol. Biotechnol. 1999 22 58 63 10.1038/sj.jim.2900603 

  56. 56. Holub B.J. The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease Adv. Nutr. Res. 1982 4 107 141 6278902 

  57. 57. Kullenberg D. Taylor L.A. Schneider M. Massing U. Health effects of dietary phospholipids Lipids Health Dis. 2012 11 3 10.1186/1476-511X-11-3 22221489 

  58. 58. Burgess J.W. Neville T.A. Rouillard P. Harder Z. Beanlands D.S. Sparks D.L. Phosphatidylinositol increases HDL-C levels in humans J. Lipid Res. 2005 46 350 355 10.1194/jlr.M400438-JLR200 15576836 

  59. 59. Brunton J.A. Baldwin M.P. Hanna R.A. Bertolo R.F. Proline supplementation to parenteral nutrition results in greater rates of protein synthesis in the muscle, skin, and small intestine in neonatal Yucatan miniature piglets J. Nutr. 2012 142 1004 1008 10.3945/jn.111.154534 22535763 

  60. 60. Li P. Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth Amino Acids 2018 50 29 38 10.1007/s00726-017-2490-6 28929384 

  61. 61. Barbul A. Proline precursors to sustain mammalian collagen synthesis J. Nutr. 2008 138 2021s 2024s 10.1093/jn/138.10.2021S 18806118 

  62. 62. Liang X. Dickman M.B. Becker D.F. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae J. Biol. Chem. 2014 289 27794 27806 10.1074/jbc.M114.562827 25112878 

  63. 63. Hayat S. Hayat Q. Alyemeni M.N. Wani A.S. Pichtel J. Ahmad A. Role of proline under changing environments: A review Plant Signal. Behav. 2012 7 1456 1466 10.4161/psb.21949 22951402 

  64. 64. Kato J. Horie S. Komatsubara S. Kisumi M. Chibata I. Production of L -proline by Kurthia catenaforma Appl. Microbiol. 1968 16 1200 1206 10.1128/AEM.16.8.1200-1206.1968 5675509 

  65. 65. Prockop D.J. Juva K. Synthesis of hydroxyproline in vitro by the hydroxylation of proline in a precursor of collagen Proc. Natl. Acad. Sci. USA 1965 53 661 668 10.1073/pnas.53.3.661 14338248 

  66. 66. Ji Y. Guo Q. Yin Y. Blachier F. Kong X. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs J. Anim. Sci. Biotechnol. 2018 9 18 10.1186/s40104-018-0233-5 29423216 

  67. 67. Ivanov K. Stoimenova A. Obreshkova D. Saso L. Biotechnology in the production of pharmaceutical industry ingredients: Amino acids Biotechnol. Biotechnol. Equip. 2013 27 3620 3626 10.5504/BBEQ.2012.0134 

  68. 68. Lee K. Kim H.-J. Park S.-K. Amino acids analysis during lactic acid fermentation by single strain cultures of lactobacilli and mixed culture starter made from them Afr. J. Biotechnol. 2014 13 2867 2873 

  69. 69. Bannai M. Kawai N. Ono K. Nakahara K. Murakami N. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers Front Neurol. 2012 3 61 10.3389/fneur.2012.00061 22529837 

  70. 70. Rose M.L. Madren J. Bunzendahl H. Thurman R.G. Dietary glycine inhibits the growth of B16 melanoma tumors in mice Carcinogenesis 1999 20 793 798 10.1093/carcin/20.5.793 10334195 

  71. 71. Garrido-Fernandez J. Maldonado-Barragan A. Caballero-Guerrero B. Hornero-Mendez D. Ruiz-Barba J.L. Carotenoid production in Lactobacillus plantarum Int. J. Food Microbiol. 2010 140 34 39 10.1016/j.ijfoodmicro.2010.02.015 20303609 

  72. 72. Arab L. Steck S. Lycopene and cardiovascular disease Am. J. Clin. Nutr. 2000 71 1691S 1695S 10.1093/ajcn/71.6.1691S 10837319 

  73. 73. Bartkiene E. Vidmantiene D. Juodeikiene G. Viskelis P. Urbonaviciene D. Lactic acid fermentation of tomato: Effects on cis/trans lycopene isomer ratio, β-carotene mass fraction and formation of L (+)-and D (?)-lactic acid Food Technol. Biotech. 2013 51 471 

  74. 74. Breithaupt D.E. Schwack W. Wolf G. Hammes W.P. Characterization of the triterpenoid 4, 4′-diaponeurosporene and its isomers in food-associated bacteria Eur. Food Res. Technol. 2001 213 231 233 10.1007/s002170100358 

  75. 75. Sanchez-Contreras A. Jimenez M. Sanchez S. Bioconversion of lutein to products with aroma Appl. Microbiol. Biotechnol. 2000 54 528 534 10.1007/s002530000421 11092628 

  76. 76. Lee H. Ahn Y.T. Park S.H. Park D.Y. Jin Y.W. Kim C.S. Sung S.H. Huh C.S. Kim D.H. Lactobacillus plantarum HY7712 protects against the impairment of NK-cell activity caused by whole-body γ-irradiation in mice J. Microbiol. Biotechnol. 2014 24 127 131 10.4014/jmb.1307.07001 24105270 

  77. 77. Jang S.E. Joh E.H. Lee H.Y. Ahn Y.T. Lee J.H. Huh C.S. Han M.J. Kim D.H. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice J. Microbiol. Biotechnol. 2013 23 414 421 10.4014/jmb.1210.10010 23462016 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로