최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nutrients, v.12 no.2, 2020년, pp.431 -
Lee, Da-Hye (Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea) , Ahn, Jiyun (leedahye0826@gmail.com (D.-H.L.)) , Jang, Young-Jin (jyan@kfri.re.kr (J.A.)) , Seo, Hyo-Deok (jyj616@kfri.re.kr (Y.-J.J.)) , Ha, Tae-Youl (hyo-deok.seo@kfri.re.kr (H.-D.S.)) , Kim, Min Jung (tyhap@kfri.re.kr (T.-Y.H.)) , Huh, Yang Hoon (kmj@kfri.re.kr (M.J.K.)) , Jung, Chang Hwa (Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun, Jeonbuk 55365, Korea)
Withania somnifera (WS), commonly known as ashwagandha, possesses diverse biological functions. WS root has mainly been used as an herbal medicine to treat anxiety and was recently reported to have an anti-obesity effect, however, the mechanisms underlying its action remain to be explored. We hypoth...
1. Hill J.O. Wyatt H.R. Peters J.C. Energy balance and obesity Circulation 2012 126 126 132 10.1161/CIRCULATIONAHA.111.087213 22753534
2. Tseng Y.-H. Cypess A.M. Kahn C.R. Cellular bioenergetics as a target for obesity therapy Nat. Rev. Drug Discov. 2010 9 465 482 10.1038/nrd3138 20514071
3. Dulloo A.G. Schutz Y. Adaptive Thermogenesis in Resistance to Obesity Therapies: Issues in Quantifying Thrifty Energy Expenditure Phenotypes in Humans Curr. Obes. Rep. 2015 4 230 240 10.1007/s13679-015-0156-9 26627218
4. Wu Z. Puigserver P. Andersson U. Zhang C. Adelmant G. Mootha V. Troy A. Cinti S. Lowell B. Scarpulla R.C. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 Cell 1999 98 115 124 10.1016/S0092-8674(00)80611-X 10412986
5. Zhang Z. Zhang H. Li B. Meng X. Wang J. Zhang Y. Yao S. Ma Q. Jin L. Yang J. Berberine activates thermogenesis in white and brown adipose tissue Nat. Commun. 2014 5 5493 10.1038/ncomms6493 25423280
6. Li H. Qi J. Li L. Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis Pharmacol. Res. 2019 147 104393 10.1016/j.phrs.2019.104393 31401211
7. Wu J. Bostrom P. Sparks L.M. Ye L. Choi J.H. Giang A.H. Khandekar M. Virtanen K.A. Nuutila P. Schaart G. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human Cell 2012 150 366 376 10.1016/j.cell.2012.05.016 22796012
8. Bartelt A. Heeren J. Adipose tissue browning and metabolic health Nat. Rev. Endocrinol. 2014 10 24 36 10.1038/nrendo.2013.204 24146030
9. Harms M. Seale P. Brown and beige fat: Development, function and therapeutic potential Nat. Med. 2013 19 1252 1263 10.1038/nm.3361 24100998
10. Inagaki T. Sakai J. Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function Nat. Rev. Mol. Cell Biol. 2016 17 480 495 10.1038/nrm.2016.62 27251423
11. van den Berg S.A. van Marken Lichtenbelt W. Willems van Dijk K. Schrauwen P. Skeletal muscle mitochondrial uncoupling, adaptive thermogenesis and energy expenditure Curr. Opin. Clin. Nutr. Metab. Care 2011 14 243 249 10.1097/MCO.0b013e3283455d7a 21415733
12. Rowland L.A. Bal N.C. Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy Biol. Rev. Camb. Philos. Soc. 2015 90 1279 1297 10.1111/brv.12157 25424279
13. Lowell B.B. Bachman E.S. Beta-Adrenergic receptors, diet-induced thermogenesis, and obesity J. Biol. Chem. 2003 278 29385 29388 10.1074/jbc.R300011200 12788929
14. Bournat J.C. Brown C.W. Mitochondrial dysfunction in obesity Curr. Opin. Endocrinol. Diabetes Obes. 2010 17 446 452 10.1097/MED.0b013e32833c3026 20585248
15. Wang T. Si Y. Shirihai O.S. Si H. Schultz V. Corkey R.F. Hu L. Deeney J.T. Guo W. Corkey B.E. Respiration in adipocytes is inhibited by reactive oxygen species Obesity 2010 18 1493 1502 10.1038/oby.2009.456 20035277
16. Hirabara S.M. Curi R. Maechler P. Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells J. Cell. Physiol. 2010 222 187 194 10.1002/jcp.21936 19780047
17. James A.M. Collins Y. Logan A. Murphy M.P. Mitochondrial oxidative stress and the metabolic syndrome Trends Endocrinol. Metab. 2012 23 429 434 10.1016/j.tem.2012.06.008 22831852
18. Mirjalili M.H. Moyano E. Bonfill M. Cusido R.M. Palazon J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine Molecules 2009 14 2373 2393 10.3390/molecules14072373 19633611
19. Palliyaguru D.L. Singh S.V. Kensler T.W. Withania somnifera: From prevention to treatment of cancer Mol. Nutr. Food Res. 2016 60 1342 1353 10.1002/mnfr.201500756 26718910
20. Samadi Noshahr Z. Shahraki M.R. Ahmadvand H. Nourabadi D. Nakhaei A. Protective effects of Withania somnifera root on inflammatory markers and insulin resistance in fructose-fed rats Rep. Biochem. Mol. Biol. 2015 3 62 67 26989739
21. Choudhary D. Bhattacharyya S. Joshi K. Body Weight Management in Adults under Chronic Stress Through Treatment with Ashwagandha Root Extract: A Double-Blind, Randomized, Placebo-Controlled Trial J. Evid. Based Complement. Altern. Med. 2017 22 96 106 10.1177/2156587216641830 27055824
22. Wankhede S. Langade D. Joshi K. Sinha S.R. Bhattacharyya S. Examining the effect of Withania somnifera supplementation on muscle strength and recovery: A randomized controlled trial J. Int. Soc. Sports Nutr. 2015 12 43 10.1186/s12970-015-0104-9 26609282
23. Raut A.A. Rege N.N. Tadvi F.M. Solanki P.V. Kene K.R. Shirolkar S.G. Pandey S.N. Vaidya R.A. Vaidya A.B. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers J. Ayurveda Integr. Med. 2012 3 111 114 10.4103/0975-9476.100168 23125505
24. Velickovic K. Wayne D. Leija H.A.L. Bloor I. Morris D.E. Law J. Budge H. Sacks H. Symonds M.E. Sottile V. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo Sci. Rep. 2019 9 9104 10.1038/s41598-019-45540-1 31235722
25. Rao Y. Yu H. Gao L. Lu Y.-T. Xu Z. Liu H. Gu L.-Q. Ye J.-M. Huang Z.-S. Natural alkaloid bouchardatine ameliorates metabolic disorders in high-fat diet-fed mice by stimulating the sirtuin 1/liver kinase B-1/AMPK axis Br. J. Pharmacol. 2017 174 2457 2470 10.1111/bph.13855 28493443
26. Weir J.B. New methods for calculating metabolic rate with special reference to protein metabolism J. Physiol. 1949 109 1 9 10.1113/jphysiol.1949.sp004363 15394301
27. Barbatelli G. Murano I. Madsen L. Hao Q. Jimenez M. Kristiansen K. Giacobino J.P. De Matteis R. Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation Am. J. Physiol. Endocrinol. Metab. 2010 298 E1244 E1253 10.1152/ajpendo.00600.2009 20354155
28. Diepvens K. Westerterp K.R. Westerterp-Plantenga M.S. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007 292 R77 R85 10.1152/ajpregu.00832.2005 16840650
29. Dos Santos T.W. Miranda J. Teixeira L. Aiastui A. Matheu A. Gambero A. Portillo M.P. Ribeiro M.L. Yerba Mate Stimulates Mitochondrial Biogenesis and Thermogenesis in High-Fat-Diet-Induced Obese Mice Mol. Nutr. Food Res. 2018 e1800142 10.1002/mnfr.201800142 29851217
30. Andrade J.M.O. Frade A.C.M. Guimaraes J.B. Freitas K.M. Lopes M.T.P. Guimaraes A.L.S. de Paula A.M.B. Coimbra C.C. Santos S.H.S. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet Eur. J. Nutr. 2014 53 1503 1510 10.1007/s00394-014-0655-6 24468941
31. Seo Y.-J. Kim K.-J. Choi J. Koh E.-J. Lee B.-Y. Spirulina maxima Extract Reduces Obesity through Suppression of Adipogenesis and Activation of Browning in 3T3-L1 Cells and High-Fat Diet-Induced Obese Mice Nutrients 2018 10 712 10.3390/nu10060712 29865208
32. Choi M.S. Kim Y.J. Kwon E.Y. Ryoo J.Y. Kim S.R. Jung U.J. High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes Br. J. Nutr. 2015 113 867 877 10.1017/s0007114515000100 25744306
33. Meyer C.W. Ootsuka Y. Romanovsky A.A. Body Temperature Measurements for Metabolic Phenotyping in Mice Front. Physiol. 2017 8 520 10.3389/fphys.2017.00520 28824441
34. Lanza I.R. Nair K.S. Functional assessment of isolated mitochondria in vitro Methods Enzymol. 2009 457 349 372 10.1016/s0076-6879(09)05020-4 19426878
35. Flachs P. Rossmeisl M. Kuda O. Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype Biochim. Biophys. Acta 2013 1831 986 1003 10.1016/j.bbalip.2013.02.003 23454373
36. Larsen S. Nielsen J. Hansen C.N. Nielsen L.B. Wibrand F. Stride N. Schroder H.D. Boushel R. Helge J.W. Dela F. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects J. Physiol. 2012 590 3349 3360 10.1113/jphysiol.2012.230185 22586215
37. Hofmann T. Elbelt U. Stengel A. Irisin as a muscle-derived hormone stimulating thermogenesis-A critical update Peptides 2014 54 89 100 10.1016/j.peptides.2014.01.016 24472856
38. Stanford K.I. Goodyear L.J. Muscle-Adipose Tissue Cross Talk Cold Spring Harb. Perspect. Med. 2018 8 a029801 10.1101/cshperspect.a029801 28507197
39. Cannon B. Nedergaard J. Brown adipose tissue: Function and physiological significance Physiol. Rev. 2004 84 277 359 10.1152/physrev.00015.2003 14715917
40. Nedergaard J. Golozoubova V. Matthias A. Asadi A. Jacobsson A. Cannon B. UCP1: The only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency Biochim. Biophys. Acta 2001 1504 82 106 10.1016/S0005-2728(00)00247-4 11239487
41. Canto C. Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure Curr. Opin. Lipidol. 2009 20 98 105 10.1097/MOL.0b013e328328d0a4 19276888
42. Chau M.D.L. Gao J. Yang Q. Wu Z. Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway Proc. Natl. Acad. Sci. USA 2010 107 12553 12558 10.1073/pnas.1006962107 20616029
43. Patel D.P. Yan T. Kim D. Dias H.B. Krausz K.W. Kimura S. Gonzalez F.J. Withaferin A improves non-alcoholic steatohepatitis in mice J. Pharmacol. Exp. Ther. 2019 10.1124/jpet.119.256792 31420528
44. Lee J. Liu J. Feng X. Salazar Hernandez M.A. Mucka P. Ibi D. Choi J.W. Ozcan U. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice Nat. Med. 2016 22 1023 1032 10.1038/nm.4145 27479085
45. Fisler J.S. Warden C.H. Uncoupling proteins, dietary fat and the metabolic syndrome Nutr. Metab. 2006 3 38 10.1186/1743-7075-3-38 16968550
46. Schrauwen P. Hesselink M. UCP2 and UCP3 in muscle controlling body metabolism J. Exp. Biol. 2002 205 2275 2285 12110661
47. Ricquier D. Bouillaud F. Mitochondrial uncoupling proteins: From mitochondria to the regulation of energy balance J. Physiol. 2000 529 Pt 1 3 10 10.1111/j.1469-7793.2000.00003.x 11080246
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.