$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer

Nature genetics, v.52 no.6, 2020년, pp.594 - 603  

Lee, Hae-Ock ,  Hong, Yourae ,  Etlioglu, Hakki Emre ,  Cho, Yong Beom ,  Pomella, Valentina ,  Van den Bosch, Ben ,  Vanhecke, Jasper ,  Verbandt, Sara ,  Hong, Hyekyung ,  Min, Jae-Woong ,  Kim, Nayoung ,  Eum, Hye Hyeon ,  Qian, Junbin ,  Boeckx, Bram ,  Lambrechts, Diether ,  Tsantoulis, Petros ,  De Hertogh, Gert ,  Chung, Woosung ,  Lee, Taeseob ,  An, Minae ,  Shin, Hyun-Tae ,  Joung, Je-Gun ,  Jung, Min-Hyeok ,  Ko, Gunhwan ,  Wirapati, Pratyaksha ,  Kim, Seok Hyung ,  Kim, Hee Cheol ,  Yun, Seong Hyeon ,  Tan, Iain Bee Huat ,  Ranjan, Bobby ,  Lee, Woo Yong ,  Kim, Tae-You ,  Choi, Jung Kyoon ,  Kim, Young-Joon ,  Prabhakar, Shyam ,  Tejpar, Sabine ,  Park, Woong-Yang

초록이 없습니다.

참고문헌 (74)

  1. Nat. Med. J Guinney 21 1350 2015 10.1038/nm.3967 Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350-1356 (2015). 

  2. Nat. Rev. Cancer R Dienstmann 17 79 2017 10.1038/nrc.2016.126 Dienstmann, R. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17, 79-92 (2017). 

  3. Genome Biol. X Ren 19 2018 10.1186/s13059-018-1593-z Ren, X., Kang, B. & Zhang, Z. Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol. 19, 211 (2018). 

  4. Nat. Genet. H Li 49 708 2017 10.1038/ng.3818 Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708-718 (2017). 

  5. Nature L Zhang 564 268 2018 10.1038/s41586-018-0694-x Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268-272 (2018). 

  6. Nat. Med. M Binnewies 24 541 2018 10.1038/s41591-018-0014-x Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541-550 (2018). 

  7. Nat. Biotechnol. A Butler 36 411 2018 10.1038/nbt.4096 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420 (2018). 

  8. Nat. Immunol. D Aran 20 163 2019 10.1038/s41590-018-0276-y Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163-172 (2019). 

  9. Nat. Med. D Lambrechts 24 1277 2018 10.1038/s41591-018-0096-5 Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277-1289 (2018). 

  10. Clin. Cancer Res. E Becht 22 4057 2016 10.1158/1078-0432.CCR-15-2879 Becht, E. et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 22, 4057-4066 (2016). 

  11. Nat. Biotechnol. P Dalerba 29 1120 2011 10.1038/nbt.2038 Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120-1127 (2011). 

  12. Nature K Parikh 567 49 2019 10.1038/s41586-019-0992-y Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49-55 (2019). 

  13. J. Cell Biol. F Gerbe 192 767 2011 10.1083/jcb.201010127 Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192, 767-780 (2011). 

  14. Nat. Methods X Qiu 14 979 2017 10.1038/nmeth.4402 Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979-982 (2017). 

  15. Mol. Cell ML Suvà 75 7 2019 10.1016/j.molcel.2019.05.003 Suvà, M. L. & Tirosh, I. Single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol. Cell 75, 7-12 (2019). 

  16. Nat. Genet. A Calon 47 320 2015 10.1038/ng.3225 Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320-329 (2015). 

  17. Nat. Genet. C Isella 47 312 2015 10.1038/ng.3224 Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312-319 (2015). 

  18. BMC Cancer B Perez-Villamil 12 2012 10.1186/1471-2407-12-260 Perez-Villamil, B. et al. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer 12, 260 (2012). 

  19. Int. Biol. Biomed. J. K Thanki 3 105 2017 Thanki, K. et al. Consensus molecular subtypes of colorectal cancer and their clinical implications. Int. Biol. Biomed. J. 3, 105-111 (2017). 

  20. Blood M Berger 105 1094 2005 10.1182/blood-2004-06-2315 Berger, M., Bergers, G., Arnold, B., Hämmerling, G. J. & Ganss, R. Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105, 1094-1101 (2005). 

  21. Neth. Heart J. SSM Rensen 15 100 2007 10.1007/BF03085963 Rensen, S. S. M., Doevendans, P. A. F. M. & van Eys, G. J. J. M. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15, 100-108 (2007). 

  22. Glia M Rao 63 2040 2015 10.1002/glia.22876 Rao, M. et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia 63, 2040-2057 (2015). 

  23. Cell J Kinchen 175 372 2018 10.1016/j.cell.2018.08.067 Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372-386.e17 (2018). 

  24. Cell Rep. T Xie 22 3625 2018 10.1016/j.celrep.2018.03.010 Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625-3640 (2018). 

  25. Am. J. Respir. Cell Mol. Biol. J Green 54 532 2016 10.1165/rcmb.2015-0095OC Green, J., Endale, M., Auer, H. & Perl, A.-K. T. Diversity of interstitial lung fibroblasts is regulated by platelet-derived growth factor receptor α kinase activity. Am. J. Respir. Cell Mol. Biol. 54, 532-545 (2016). 

  26. Science AN Nabhan 359 1118 2018 10.1126/science.aam6603 Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359, 1118-1123 (2018). 

  27. Biochim. Biophys. Acta T Vanuytsel 1830 2410 2013 10.1016/j.bbagen.2012.08.006 Vanuytsel, T., Senger, S., Fasano, A. & Shea-Donohue, T. Major signaling pathways in intestinal stem cells. Biochim. Biophys. Acta 1830, 2410-2426 (2013). 

  28. Cell Adh. Migr. M Otranto 6 203 2012 10.4161/cam.20377 Otranto, M. et al. The role of the myofibroblast in tumor stroma remodeling. Cell Adh. Migr. 6, 203-219 (2012). 

  29. Nat. Cell Biol. L Vermeulen 12 468 2010 10.1038/ncb2048 Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468-476 (2010). 

  30. Cell Rep. A Kumar 19 1902 2017 10.1016/j.celrep.2017.05.019 Kumar, A. et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 19, 1902-1916 (2017). 

  31. Cancer Res. Q Zhao 78 2370 2018 10.1158/0008-5472.CAN-17-2728 Zhao, Q. et al. Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res. 78, 2370-2382 (2018). 

  32. Leukemia S Lamorte 26 1081 2012 10.1038/leu.2011.290 Lamorte, S. et al. Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells. Leukemia 26, 1081-1090 (2012). 

  33. Am. J. Pathol. DS O’Connor 156 393 2000 10.1016/S0002-9440(10)64742-6 O’Connor, D. S. et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am. J. Pathol. 156, 393-398 (2000). 

  34. Blood AW Griffioen 88 667 1996 10.1182/blood.V88.2.667.bloodjournal882667 Griffioen, A. W., Damen, C. A., Blijham, G. H. & Groenewegen, G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88, 667-673 (1996). 

  35. Arterioscler. Thromb. Vasc. Biol. D Baitsch 31 1160 2011 10.1161/ATVBAHA.111.222745 Baitsch, D. et al. Apolipoprotein E induces antiinflammatory phenotype in macrophages. Arterioscler. Thromb. Vasc. Biol. 31, 1160-1168 (2011). 

  36. J. Immunol. ME Benoit 188 5682 2012 10.4049/jimmunol.1103760 Benoit, M. E., Clarke, E. V., Morgado, P., Fraser, D. A. & Tenner, A. J. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J. Immunol. 188, 5682-5693 (2012). 

  37. Nat. Commun. V Bronte 7 2016 10.1038/ncomms12150 Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016). 

  38. Science A-C Villani 356 eaah4573 2017 10.1126/science.aah4573 Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017). 

  39. J. Immunol. H Guo 166 1079 2001 10.4049/jimmunol.166.2.1079 Guo, H., Cai, C. Q., Schroeder, R. A. & Kuo, P. C. Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. J. Immunol. 166, 1079-1086 (2001). 

  40. Mediators Inflamm. LM Castello 2017 4049098 2017 10.1155/2017/4049098 Castello, L. M. et al. Osteopontin at the crossroads of inflammation and tumor progression. Mediators Inflamm. 2017, 4049098 (2017). 

  41. Cytokine Growth Factor Rev. KX Wang 19 333 2008 10.1016/j.cytogfr.2008.08.001 Wang, K. X. & Denhardt, D. T. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev. 19, 333-345 (2008). 

  42. Nat. Med. X Guo 24 978 2018 10.1038/s41591-018-0045-3 Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978-985 (2018). 

  43. J. Immunol. W Zhang 198 3719 2017 10.4049/jimmunol.1602039 Zhang, W. et al. Characterization of the B cell receptor repertoire in the intestinal mucosa and of tumor-infiltrating lymphocytes in colorectal adenoma and carcinoma. J. Immunol. 198, 3719-3728 (2017). 

  44. Nat. Commun. JA Ramilowski 6 2015 10.1038/ncomms8866 Ramilowski, J. A. et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866 (2015). 

  45. Nature R Vento-Tormo 563 347 2018 10.1038/s41586-018-0698-6 Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347-353 (2018). 

  46. Nat. Protoc. M Efremova 15 1484 2020 10.1038/s41596-020-0292-x Efremova, M., Vento-Tormo, M., Teichman, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit receptor-ligand complexes. Nat. Protoc. 15, 1484-1506 (2020). 

  47. Cancer Cell A Calon 22 571 2012 10.1016/j.ccr.2012.08.013 Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571-584 (2012). 

  48. J. Clin. Invest. JD Klement 128 5549 2018 10.1172/JCI123360 Klement, J. D. et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J. Clin. Invest. 128, 5549-5560 (2018). 

  49. Nature DVF Tauriello 554 538 2018 10.1038/nature25492 Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538-543 (2018). 

  50. Immunol. Rev. C Gutzeit 260 76 2014 10.1111/imr.12189 Gutzeit, C., Magri, G. & Cerutti, A. Intestinal IgA production and its role in host-microbe interaction. Immunol. Rev. 260, 76-85 (2014). 

  51. Nat. Rev. Immunol. MM Nielsen 17 733 2017 10.1038/nri.2017.101 Nielsen, M. M., Witherden, D. A. & Havran, W. L. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733-745 (2017). 

  52. Cell C Zheng 169 1342 2017 10.1016/j.cell.2017.05.035 Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342-1356.e16 (2017). 

  53. Semin. Cell Dev. Biol. S Kitajima 58 127 2016 10.1016/j.semcdb.2016.06.009 Kitajima, S., Thummalapalli, R. & Barbie, D. A. Inflammation as a driver and vulnerability of KRAS mediated oncogenesis. Semin. Cell Dev. Biol. 58, 127-135 (2016). 

  54. Br. J. Cancer A Trinh 119 1244 2018 10.1038/s41416-018-0230-7 Trinh, A. et al. Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: a study of 1320 colorectal cancers with Consensus Molecular Subgroup (CMS) data. Br. J. Cancer 119, 1244-1251 (2018). 

  55. EMBO Mol. Med. E Fessler 8 745 2016 10.15252/emmm.201606184 Fessler, E. et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med. 8, 745-760 (2016). 

  56. Mol. Cell. Biol. L Levy 25 8108 2005 10.1128/MCB.25.18.8108-8125.2005 Levy, L. & Hill, C. S. Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol. Cell. Biol. 25, 8108-8125 (2005). 

  57. Bioinformatics H Li 26 589 2010 10.1093/bioinformatics/btp698 Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595 (2010). 

  58. Nat. Genet. MA DePristo 43 491 2011 10.1038/ng.806 DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491-498 (2011). 

  59. Nat. Methods S Kim 15 591 2018 10.1038/s41592-018-0051-x Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591-594 (2018). 

  60. Bioinformatics A Dobin 29 15 2013 10.1093/bioinformatics/bts635 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013). 

  61. BMC Bioinformatics B Li 12 323 2011 10.1186/1471-2105-12-323 Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011). 

  62. Bioinformatics AM Bolger 30 2114 2014 10.1093/bioinformatics/btu170 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014). 

  63. Bioinformatics S Anders 31 166 2015 10.1093/bioinformatics/btu638 Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169 (2015). 

  64. Nat. Commun. K Yoshihara 4 2013 10.1038/ncomms3612 Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013). 

  65. Cell Q Zhang 179 829 2019 10.1016/j.cell.2019.10.003 Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829-845.e20 (2019). 

  66. Genome Biol. MI Love 15 2014 10.1186/s13059-014-0550-8 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 

  67. Nat. Med. A Sadanandam 19 619 2013 10.1038/nm.3175 Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619-625 (2013). 

  68. Cell Syst. A Liberzon 1 417 2015 10.1016/j.cels.2015.12.004 Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417-425 (2015). 

  69. Proc. Natl Acad. Sci. USA A Subramanian 102 15545 2005 10.1073/pnas.0506580102 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545-15550 (2005). 

  70. Methods Mol. Biol. H Mi 563 123 2009 10.1007/978-1-60761-175-2_7 Mi, H. & Thomas, P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 563, 123-140 (2009). 

  71. Nucleic Acids Res. H Mi 47 D419 2019 10.1093/nar/gky1038 Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419-D426 (2019). 

  72. Nat. Med. F De Sousa e Melo 19 614 2013 10.1038/nm.3174 De Sousa e Melo, F. et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19, 614-618 (2013). 

  73. Clin. Cancer Res. HC Kang 10 272 2004 10.1158/1078-0432.CCR-1025-3 Kang, H. C. et al. Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin. Cancer Res. 10, 272-284 (2004). 

  74. Nat. Commun. Z Liu 8 2017 10.1038/s41467-017-00039-z Liu, Z. et al. Reconstructing cell cycle pseudo time-series via single-cell transcriptome data. Nat. Commun. 8, 22 (2017). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로