$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Power generation from ambient humidity using protein nanowires 원문보기

Nature, v.578 no.7796 = no.7796, 2020년, pp.550 - 554  

Liu, Xiaomeng ,  Gao, Hongyan ,  Ward, Joy E. ,  Liu, Xiaorong ,  Yin, Bing ,  Fu, Tianda ,  Chen, Jianhan ,  Lovley, Derek R. ,  Yao, Jun

초록이 없습니다.

참고문헌 (41)

  1. Proc. IEEE MM Tentzeris 102 1644 2014 10.1109/JPROC.2014.2361599 Tentzeris, M. M., Georgiadis, A. & Roselli, L. Energy harvesting and scavenging. Proc. IEEE 102, 1644-1648 (2014). 

  2. ACM Trans. Comput. Hum. Interact. GD Abowd 7 29 2000 10.1145/344949.344988 Abowd, G. D. & Mynatt, E. D. Charting past, present, and future research in ubiquitous computing. ACM Trans. Comput. Hum. Interact. 7, 29-58 (2000). 

  3. Renew. Sustain. Energy Rev. B Parida 15 1625 2011 10.1016/j.rser.2010.11.032 Parida, B., Iniyan, S. & Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625-1636 (2011). 

  4. ACS Nano ZL Wang 7 9533 2013 10.1021/nn404614z Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and active mechanical and chemical sensors. ACS Nano 7, 9533-9557 (2013). 

  5. Energy Convers. Manage. D Champier 140 167 2017 10.1016/j.enconman.2017.02.070 Champier, D. Thermoelectric generators: a review of applications. Energy Convers. Manage. 140, 167-181 (2017). 

  6. Adv. Mater. F Zhao 27 4351 2015 10.1002/adma.201501867 Zhao, F., Cheng, H., Zhang, Z., Jiang, L. & Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351-4357 (2015). 

  7. Adv. Funct. Mater. J Xue 26 8784 2016 10.1002/adfm.201604188 Xue, J. et al. Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 26, 8784-8792 (2016). 

  8. Energy Environ. Sci. F Zhao 9 912 2016 10.1039/C5EE03701H Zhao, F., Liang, Y., Cheng, H., Jiang, L. & Qu, L. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912-916 (2016). 

  9. Adv. Funct. Mater. T Ding 27 1700551 2017 10.1002/adfm.201700551 Ding, T. et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27, 1700551 (2017). 

  10. Adv. Mater. D Shen 30 1705925 2018 10.1002/adma.201705925 Shen, D. et al. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30, 1705925 (2018). 

  11. Angew. Chem. Int. Edn K Liu 55 8003 2016 10.1002/anie.201602708 Liu, K. et al. Induced potential in porous carbon films through water vapor adsorption. Angew. Chem. Int. Edn 55, 8003-8007 (2016). 

  12. Energy Environ. Sci. H Cheng 11 2839 2018 10.1039/C8EE01502C Cheng, H. et al. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11, 2839-2845 (2018). 

  13. Nat. Nanotechnol. G Xue 12 317 2017 10.1038/nnano.2016.300 Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317-321 (2017). 

  14. Nat. Nanotechnol. Z Zhang 13 1109 2018 10.1038/s41565-018-0228-6 Zhang, Z. et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109-1119 (2018). 

  15. Curr. Opin. Electrochem DR Lovley 4 190 2017 10.1016/j.coelec.2017.08.015 Lovley, D. R. Electrically conductive pili: biological function and potential applications in electronics. Curr. Opin. Electrochem 4, 190-198 (2017). 

  16. MBio DR Lovley 8 e00695 2017 10.1128/mBio.00695-17 Lovley, D. R. e-Biologics: fabrication of sustainable electronics with “green” biological materials. MBio 8, e00695 (2017). 

  17. Front. Microbiol. DR Lovley 10 2078 2019 10.3389/fmicb.2019.02078 Lovley, D. R. & Walker, D. J. F. Geobacter protein nanowires. Front. Microbiol. 10, 2078 (2019). 

  18. Nat. Nanotechnol. NS Malvankar 6 573 2011 10.1038/nnano.2011.119 Malvankar, N. S. et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573-579 (2011). 

  19. RSC Adv. RY Adhikari 6 8354 2016 10.1039/C5RA28092C Adhikari, R. Y., Malvankar, N. S., Tuominen, M. T. & Lovley, D. R. Conductivity of individual Geobacter pili. RSC Adv. 6, 8354-8357 (2016). 

  20. Biol. DJ Filman 2 219 2019 Filman, D. J. et al. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun. Biol. 2, 219 (2019). 

  21. Cell F Wang 177 361 2019 10.1016/j.cell.2019.03.029 Wang, F. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177, 361-369 (2019). 

  22. Phys. Chem. Chem. Phys. GT Feliciano 17 22217 2015 10.1039/C5CP03432A Feliciano, G. T., Steidl, R. J. & Reguera, G. Structural and functional insights into the conductive pili of Geobacter sulfureducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys. 17, 22217 (2015). 

  23. Sci. Rep. K Xiao 6 2016 10.1038/srep23385 Xiao, K. et al. Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurredecens pili. Sci. Rep. 6, 23385 (2016). 

  24. 10.1007/1-4020-3962-X Ho, C. K. & Webb, S. W. Gas Transport in Porous Media (Springer, 2006). 

  25. J. Braz. Chem. Soc. LC Soares 19 277 2008 Soares, L. C., Bertazzo, S., Burgo, T. A. L., Baldim, V. & Galembeck, F. A new mechanism for the electrostatic charge build-up and dissipation in dielectrics. J. Braz. Chem. Soc. 19, 277-286 (2008). 

  26. J. Am. Chem. Soc. RF Gouveia 131 11381 2009 10.1021/ja900704f Gouveia, R. F. & Galembeck, F. Electrostatic charging of hydrophilic particles due to water adsorption. J. Am. Chem. Soc. 131, 11381-11386 (2009). 

  27. Langmuir TRD Ducati 26 13763 2010 10.1021/la102494k Ducati, T. R. D., Simoes, L. H. & Galembeck, F. Charge partitioning at gas-solid interfaces: humidity causes electricity buildup on metals. Langmuir 26, 13763-13766 (2010). 

  28. J. Chem. Educ. RS Perkins 51 254 1974 10.1021/ed051p254 Perkins, R. S. Rate laws for elementary chemical reactions. J. Chem. Educ. 51, 254 (1974). 

  29. Adv. Physiol. Educ. SH Wright 28 139 2004 10.1152/advan.00029.2004 Wright, S. H. Generation of resting membrane potential. Adv. Physiol. Educ. 28, 139-142 (2004). 

  30. Nat. Commun. B Yin 9 2018 10.1038/s41467-018-07672-2 Yin, B., Liu, X., Gao, H., Fu, T. & Yao, J. Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nat. Commun. 9, 5161 (2018). 

  31. MBio M Vargas 4 e00105 2013 10.1128/mBio.00210-13 Vargas, M. et al. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4, e00105-13 (2013); erratum 4, e00210-13 (2013). 

  32. Nature J Xiang 441 489 2006 10.1038/nature04796 Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489-493 (2006). 

  33. Proc. Natl Acad. Sci. USA J Yao 111 2431 2014 10.1073/pnas.1323818111 Yao, J. et al. Nanowire nanocomputer as a finite-state machine. Proc. Natl Acad. Sci. USA 111, 2431-2435 (2014). 

  34. Environ. Microbiol. A Esteve-Núñez 7 641 2005 10.1111/j.1462-2920.2005.00731.x Esteve-Núñez, A., Rothermich, M. M., Sharma, M. & Lovley, D. R. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ. Microbiol. 7, 641-648 (2005). 

  35. Appl. Environ. Microbiol. MV Coppi 67 3180 2001 10.1128/AEM.67.7.3180-3187.2001 Coppi, M. V., Leang, C., Sandler, S. J. & Lovley, D. R. Development of a genetic system for Geobacter sulfurreducens. Appl. Environ. Microbiol. 67, 3180-3187 (2001). 

  36. MBio Y Tan 8 e02203 2017 10.1128/mBio.02203-16 Tan, Y. et al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. MBio 8, e02203-16 (2017). 

  37. Small Y Tan 12 4481 2016 10.1002/smll.201601112 Tan, Y. et al. Synthetic biological protein nanowires with high conductivity. Small 12, 4481-4485 (2016). 

  38. Adv. Mater. J Feng 24 1969 2012 10.1002/adma.201104681 Feng, J. et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969-1974 (2012). 

  39. J. Comput. Chem. BR Brooks 30 1545 2009 10.1002/jcc.21287 Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545-1614 (2009). 

  40. Nat. Methods J Huang 14 71 2017 10.1038/nmeth.4067 Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71-73 (2017). 

  41. J. Mol. Graph. Model. OS Smart 14 354 1996 10.1016/S0263-7855(97)00009-X Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. Model. 14, 354-360 (1996). 

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로