최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal für die reine und angewandte Mathematik, v.2020 no.764 = no.764, 2020년, pp.287 - 304
Baik, Hyungryul , Shokrieh, Farbod , Wu, Chenxi
AbstractWe prove a generalized version of Kazhdan’s theorem for canonical forms on Riemann surfaces. In the classical version, one starts with an ascending sequence[FORMULA OMISSION]of finite Galois covers of a hyperbolic Riemann surfaceS, converging to theuniversal cover. The theorem states that the sequence of forms onSinherited from the canonical forms on[FORMULA OMISSION]’s converges uniformly to (a multiple of) the hyperbolic form. We prove a generalized version of this theorem, wherethe universal coveris replaced withany infinite Galois cover. Along the way, we also prove a Gauss-Bonnet-type theorem in the context of arbitrary infinite Galois covers.
10.4007/annals.2017.185.3.1 M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault and I. Samet, On the growth of L2L^{2}-invariants for sequences of lattices in Lie groups, Ann. of Math. (2) 185 (2017), no. 3, 711-790.
S. J. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179-1192.
10.4310/jdg/1478138546 B.-Y. Chen and S. Fu, Stability of the Bergman kernel on a tower of coverings, J. Differential Geom. 104 (2016), no. 3, 371-398.
10.1016/0040-9383(77)90013-1 J. Dodziuk, De Rham-Hodge theory for L2L^{2}-cohomology of infinite coverings, Topology 16 (1977), no. 2, 157-165.
10.1007/PL00004562 H. Donnelly, Elliptic operators and covers of Riemannian manifolds, Math. Z. 223 (1996), no. 2, 303-308.
L. C. Evans, Partial differential equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence 2010.
10.2307/2007043 G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387-424.
G. B. Folland, Real analysis, Pure Appl. Math. (N. Y.), 2nd ed., John Wiley & Sons, New York 1999.
10.4310/jdg/1549422102 R. de Jong, Faltings delta-invariant and semistable degeneration, J. Differential Geom. 111 (2019), no. 2, 241-301.
D. A. Kazhdan, Arithmetic varieties and their fields of quasi-definition, Actes du Congrès International des Mathématiciens. Tome 2 Nice 1970, Gauthier-Villars, Paris (1971), 321-325.
D. A. Kazhdan, On arithmetic varieties Lie groups and their representations Budapest 1971, Halsted, New York (1975), 151-217.
10.1007/BF01896404 W. Lück, Approximating L2L^{2}-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455-481.
10.4171/CMH/308 C. T. McMullen, Entropy on Riemann surfaces and the Jacobians of finite covers, Comment. Math. Helv. 88 (2013), no. 4, 953-964.
D. Mumford, Curves and their Jacobians, The University of Michigan Press, Ann Arbor 1975.
10.2307/2006944 A. Neeman, The distribution of Weierstrass points on a compact Riemann surface, Ann. of Math. (2) 120 (1984), no. 2, 317-328.
10.2206/kyushujm.63.133 T. Ohsawa, A remark on Kazhdan’s theorem on sequences of Bergman metrics, Kyushu J. Math. 63 (2009), no. 1, 133-137.
10.1215/S0012-7094-93-07227-4 J. A. Rhodes, Sequences of metrics on compact Riemann surfaces, Duke Math. J. 72 (1993), no. 3, 725-738.
10.1007/s00222-018-0838-5 F. Shokrieh and C. Wu, Canonical measures on metric graphs and a Kazhdan’s theorem, Invent. Math. 215 (2019), no. 3, 819-862.
R. Treger, Bergman type metrics in tower of coverings, preprint (2011), https://arxiv.org/abs/1107.5713.
S.-T. Yau, Nonlinear analysis in geometry, Monogr. Enseign. Math. 33, L’Enseignement Mathématique, Geneva, 1986.
10.1016/j.aim.2012.03.022 S.-K. Yeung, A tower of coverings of quasi-projective varieties, Adv. Math. 230 (2012), no. 3, 1196-1208.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.