$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode

ACS applied materials & interfaces, v.12 no.24, 2020년, pp.27249 - 27257  

Bhoyate, Sanket (Department of Materials Science and Engineering , University of North Texas , Denton , Texas 76203 , United States) ,  Mhin, Sungwook (Heat Treatment Technology R&BD Group , Korea Institute of Industrial Technology (KITECH) , Incheon 406-840 , Republic of Korea) ,  Jeon, Jae-eun (Heat Treatment Technology R&BD Group , Korea Institute of Industrial Technology (KITECH) , Incheon 406-840 , Republic of Korea) ,  Park, KyoungRyeol (Heat Treatment Technology R&BD Group , Korea Institute of Industrial Technology (KITECH) , Incheon 406-840 , Republic of Korea) ,  Kim, Junyoung (Department of Materials Science and Engineering , University of North Texas , Denton , Texas 76203 , United States) ,  Choi, Wonbong

Abstract AI-Helper 아이콘AI-Helper

Recently, aqueous Zn-ion rechargeable batteries have drawn increasing research attention as an alternative energy storage system relative to the current Li-ion batteries due to their intrinsic properties of high safety, low cost, and high theoretical volumetric capacity. Nevertheless, unwanted dendr...

주제어

참고문헌 (52)

  1. Dunn, Bruce, Kamath, Haresh, Tarascon, Jean-Marie. Electrical Energy Storage for the Grid: A Battery of Choices. Science, vol.334, no.6058, 928-935.

  2. 10.1039/9781788013871-00001 

  3. Song, Ming, Tan, Hua, Chao, Dongliang, Fan, Hong Jin. Recent Advances in Zn‐Ion Batteries. Advanced functional materials, vol.28, no.41, 1802564-.

  4. Mineral Commodity Summaries 2019 

  5. Turney, Damon E., Gallaway, Joshua W., Yadav, Gautam G., Ramirez, Rodolfo, Nyce, Michael, Banerjee, Sanjoy, Chen-Wiegart, Yu-chen Karen, Wang, Jun, D’Ambrose, Michael J., Kolhekar, Snehal, Huang, Jinchao, Wei, Xia. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage. Chemistry of materials : a publication of the American Chemical Society, vol.29, no.11, 4819-4832.

  6. Alfaruqi, Muhammad H., Mathew, Vinod, Gim, Jihyeon, Kim, Sungjin, Song, Jinju, Baboo, Joseph P., Choi, Sun H., Kim, Jaekook. Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.10, 3609-3620.

  7. Xu, Chengjun, Li, Baohua, Du, Hongda, Kang, Feiyu. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie. international edition, vol.51, no.4, 933-935.

  8. Kundu, Dipan, Adams, Brian D., Duffort, Victor, Vajargah, Shahrzad Hosseini, Nazar, Linda F.. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature energy, vol.1, 16119-.

  9. Khor, A., Leung, P., Mohamed, M.R., Flox, C., Xu, Q., An, L., Wills, R.G.A., Morante, J.R., Shah, A.A.. Review of zinc-based hybrid flow batteries: From fundamentals to applications. Materials today energy, vol.8, 80-108.

  10. Verma, Vivek, Kumar, Sonal, Manalastas Jr., William, Satish, Rohit, Srinivasan, Madhavi. Progress in Rechargeable Aqueous Zinc‐ and Aluminum‐Ion Battery Electrodes: Challenges and Outlook. Advanced sustainable systems, vol.3, no.1, 1800111-.

  11. Fang, Guozhao, Zhou, Jiang, Pan, Anqiang, Liang, Shuquan. Recent Advances in Aqueous Zinc-Ion Batteries. ACS energy letters, vol.3, 2480-2501.

  12. Zhao, Shuai, Han, Bo, Zhang, Datong, Huang, Qun, Xiao, Lei, Chen, Libao, Ivey, Douglas G., Deng, Yida, Wei, Weifeng. Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.14, 5733-5739.

  13. Pan, Huilin, Shao, Yuyan, Yan, Pengfei, Cheng, Yingwen, Han, Kee Sung, Nie, Zimin, Wang, Chongmin, Yang, Jihui, Li, Xiaolin, Bhattacharya, Priyanka, Mueller, Karl T., Liu, Jun. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature energy, vol.1, 16039-.

  14. Hu, Yating, Wu, Yue, Wang, John. Manganese‐Oxide‐Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?. Advanced materials, vol.30, no.47, 1802569-.

  15. Li, Qi, Wang, Zi-Long, Li, Gao-Ren, Guo, Rui, Ding, Liang-Xin, Tong, Ye-Xiang. Design and Synthesis of MnO2/Mn/MnO2 Sandwich-Structured Nanotube Arrays with High Supercapacitive Performance for Electrochemical Energy Storage. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.7, 3803-3807.

  16. Julien, Christian M., Mauger, Alain. Nanostructured MnO 2 as Electrode Materials for Energy Storage. Nanomaterials, vol.7, no.11, 396-.

  17. Wu, Buke, Zhang, Guobin, Yan, Mengyu, Xiong, Tengfei, He, Pan, He, Liang, Xu, Xu, Mai, Liqiang. Graphene Scroll‐Coated α‐MnO2 Nanowires as High‐Performance Cathode Materials for Aqueous Zn‐Ion Battery. Small, vol.14, no.13, 1703850-.

  18. Huang, Jianhang, Wang, Zhuo, Hou, Mengyan, Dong, Xiaoli, Liu, Yao, Wang, Yonggang, Xia, Yongyao. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature communications, vol.9, no.1, 2906-.

  19. Sun, Ming, Li, Dong‐Shuai, Wang, Yi‐Fan, Liu, Wei‐Liang, Ren, Man‐Man, Kong, Fan‐Gong, Wang, Shou‐Juan, Guo, Yong‐Ze, Liu, Yong‐Mei. Mn3O4@NC Composite Nanorods as a Cathode for Rechargeable Aqueous Zn‐Ion Batteries. ChemElectroChem, vol.6, no.9, 2510-2516.

  20. Trejo, G., Ortega B., R., Meas, Y., Ozil, P., Chainet, E., Nguyen, B.. Nucleation and Growth of Zinc from Chloride Concentrated Solutions. Journal of the Electrochemical Society : JES, vol.145, no.12, 4090-4097.

  21. Pei, Allen, Zheng, Guangyuan, Shi, Feifei, Li, Yuzhang, Cui, Yi. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.2, 1132-1139.

  22. Zhao, Zhiming, Zhao, Jingwen, Hu, Zhenglin, Li, Jiedong, Li, Jiajia, Zhang, Yaojian, Wang, Cheng, Cui, Guanglei. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy & environmental science, vol.12, no.6, 1938-1949.

  23. Kang, Litao, Cui, Mangwei, Jiang, Fuyi, Gao, Yanfeng, Luo, Hongjie, Liu, Jianjun, Liang, Wei, Zhi, Chunyi. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries. Advanced energy materials, vol.8, no.25, 1801090-.

  24. Zhao, Kangning, Wang, Chenxu, Yu, Yanhao, Yan, Mengyu, Wei, Qiulong, He, Pan, Dong, Yifan, Zhang, Ziyi, Wang, Xudong, Mai, Liqiang. Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced materials interfaces, vol.5, no.16, 1800848-.

  25. Cha, Eunho, Patel, Mumukshu D., Park, Juhong, Hwang, Jeongwoon, Prasad, Vish, Cho, Kyeongjae, Choi, Wonbong. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nature nanotechnology, vol.13, no.4, 337-344.

  26. Choi, W., Choudhary, N., Han, G.H., Park, J., Akinwande, D., Lee, Y.H.. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials today, vol.20, no.3, 116-130.

  27. Cha, Eunho, Patel, Mumukshu, Bhoyate, Sanket, Prasad, Vish, Choi, Wonbong. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Nanoscale horizons, vol.5, no.5, 808-831.

  28. Chaabani, R, Lamouchi, A, Mari, B, Chtourou, R. Effect of sulfurization on physical and electrical properties of MoS2 films synthesized by electrodeposition route. Materials research express, vol.6, no.11, 115902-.

  29. Wang, Zhongying, Tu, Qingsong, Zheng, Sunxiang, Urban, Jeffrey J., Li, Shaofan, Mi, Baoxia. Understanding the Aqueous Stability and Filtration Capability of MoS2 Membranes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.12, 7289-7298.

  30. Falola, Bamidele D., Wiltowski, Tomasz, Suni, Ian I.. Electrodeposition of MoS2 for Charge Storage in Electrochemical Supercapacitors. Journal of the Electrochemical Society : JES, vol.163, no.9, D568-D574.

  31. Wan, Xi, Chen, Kun, Chen, Zefeng, Xie, Fangyan, Zeng, Xiaoliang, Xie, Weiguang, Chen, Jian, Xu, Jianbin. Controlled Electrochemical Deposition of Large‐Area MoS2 on Graphene for High‐Responsivity Photodetectors. Advanced functional materials, vol.27, no.19, 1603998-.

  32. Wang, Jue, Gupta, Arunava, Pan, Shanlin. A facile template-free electrodeposition method for vertically standing nanorods on conductive substrates and their applications for photoelectrochemical catalysis. International journal of hydrogen energy, vol.42, no.12, 8462-8474.

  33. Belanger, Daniel, Laperriere, Guylaine, Girard, Francois, Guay, Daniel, Tourillon, Gerard. Physicochemical characteristics of electrochemically deposited molybdenum sulfide and polypyrrole-tetrathiomolybdate/molybdenum trisulfide composite electrodes. Chemistry of materials : a publication of the American Chemical Society, vol.5, no.6, 861-868.

  34. Albu-Yaron, A., Levy-Clement, C., Katty, A., Bastide, S., Tenne, R.. Influence of the electrochemical deposition parameters on the microstructure of MoS2 thin films. Thin solid films, vol.361, 223-228.

  35. Hedlund, Jenny K., Walker, Amy V.. Modulating the Electronic Properties of Au-MoS2 Interfaces Using Functionalized Self-Assembled Monolayers. Langmuir : the ACS journal of surfaces and colloids, vol.36, no.3, 682-688.

  36. Hedlund, Jenny K., Walker, Amy V.. Polytype control of MoS2 using chemical bath deposition. The Journal of chemical physics, vol.150, no.17, 174701-.

  37. Veeramalai, Chandrasekar Perumal, Li, Fushan, Liu, Yang, Xu, Zhongwei, Guo, Tailiang, Kim, Tae Whan. Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method. Applied surface science, vol.389, 1017-1022.

  38. Lee, Changgu, Yan, Hugen, Brus, Louis E., Heinz, Tony F., Hone, James, Ryu, Sunmin. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS nano, vol.4, no.5, 2695-2700.

  39. Attanayake, Nuwan H., Thenuwara, Akila C., Patra, Abhirup, Aulin, Yaroslav V., Tran, Thi M., Chakraborty, Himanshu, Borguet, Eric, Klein, Michael L., Perdew, John P., Strongin, Daniel R.. Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS2 for the Hydrogen Evolution Reaction. ACS energy letters, vol.3, no.1, 7-13.

  40. Liu, Qin, Li, Xiuling, Xiao, Zhangru, Zhou, Yu, Chen, Haipin, Khalil, Adnan, Xiang, Ting, Xu, Junqing, Chu, Wangsheng, Wu, Xiaojun, Yang, Jinlong, Wang, Chengming, Xiong, Yujie, Jin, Chuanhong, Ajayan, Pulickel M., Song, Li. Stable Metallic 1T‐WS2 Nanoribbons Intercalated with Ammonia Ions: The Correlation between Structure and Electrical/Optical Properties. Advanced materials, vol.27, no.33, 4837-4844.

  41. Guo, Yinsheng, Sun, Dezheng, Ouyang, Bin, Raja, Archana, Song, Jun, Heinz, Tony F., Brus, Louis E.. Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS2 Crystals. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.15, no.8, 5081-5088.

  42. MoThese authors contributed equally to this work., Funian, Liang, Guojin, Meng, Qiangqiang, Liu, Zhuoxin, Li, Hongfei, Fan, Jun, Zhi, Chunyi. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy & environmental science, vol.12, no.2, 706-715.

  43. Zhang, Han, Zhao, Zongbin, Hou, Ya-Nan, Tang, Yongchao, Liang, Jingjing, Liu, Xuguang, Zhang, Zhichao, Wang, Xuzhen, Qiu, Jieshan. Highly stable lithium-sulfur batteries based on p-n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. Journal of materials chemistry. A, Materials for energy and sustainability, vol.7, no.15, 9230-9240.

  44. Lv, Xiaoxue, Lei, Tianyu, Wang, Bojun, Chen, Wei, Jiao, Yu, Hu, Yin, Yan, Yichao, Huang, Jianwen, Chu, Junwei, Yan, Chaoyi, Wu, Chunyang, Wang, Jianwei, Niu, Xiaobin, Xiong, Jie. An Efficient Separator with Low Li‐Ion Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium-Sulfur Batteries. Advanced energy materials, vol.9, no.40, 1901800-.

  45. Leftheriotis, G., Papaefthimiou, S., Yianoulis, P.. Dependence of the estimated diffusion coefficient of LixWO3 films on the scan rate of cyclic voltammetry experiments. Solid state ionics, vol.178, no.3, 259-263.

  46. Wu, Tao, Zhu, Kaiyue, Huang, Kevin. Understanding the Role of Graphene in Hydrated Layered V-Oxide Based Cathodes for Rechargeable Aqueous Zn-Ion Batteries. Journal of the Electrochemical Society : JES, vol.167, no.7, 070515-.

  47. Chen, Linlin, Yang, Zhanhong, Wu, Jian, Chen, Hongzhe, Meng, Jinlei. Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7(OH)2·2H2O cathode for aqueous zinc ion batteries. Electrochimica acta, vol.330, 135347-.

  48. Yu, Xin, Hu, Fang, Cui, Fuhan, Zhao, Jun, Guan, Chao, Zhu, Kai. The displacement reaction mechanism of the CuV2O6 nanowire cathode for rechargeable aqueous zinc ion batteries. Dalton transactions : an international journal of inorganic chemistry, vol.49, no.4, 1048-1055.

  49. Cui, Fuhan, Zhao, Jun, Zhang, Dongxu, Fang, Yongzheng, Hu, Fang, Zhu, Kai. VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chemical engineering journal, vol.390, 124118-.

  50. Li, Weiqin, An, Cuihua, Guo, Huinan, Zhang, Yan, Chen, Kai, Zhang, Zeting, Liu, Guishu, Liu, Yafei, Wang, Yijing. The encapsulation of MnFe2O4 nanoparticles into the carbon framework with superior rate capability for lithium-ion batteries. Nanoscale, vol.12, no.7, 4445-4451.

  51. Liu, Yi, Li, Chang, Xu, Jia, Ou, Mingyang, Fang, Chun, Sun, Shixiong, Qiu, Yuegang, Peng, Jian, Lu, Gongchang, Li, Qing, Han, Jiantao, Huang, Yunhui. Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery. Nano energy, vol.67, 104211-.

  52. Liang, Hanfeng, Cao, Zhen, Ming, Fangwang, Zhang, Wenli, Anjum, Dalaver H., Cui, Yi, Cavallo, Luigi, Alshareef, Husam N.. Aqueous Zinc-Ion Storage in MoS2 by Tuning the Intercalation Energy. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.19, no.5, 3199-3206.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로