$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mean transit time and subsurface flow paths in a humid temperate headwater catchment with granitic bedrock

Journal of hydrology, v.587, 2020년, pp.124942 -   

Jung, Youn-Young (Korea Basic Science Institute) ,  Koh, Dong-Chan (Korea Institute of Geoscience and Mineral Resources) ,  Lee, Jeonghoon (Department of Science Education, Ewha Womans University) ,  Tsujimura, Maki (Faculty of Life and Environmental Sciences, University of Tsukuba) ,  Yun, Seong-Taek (Department of Earth and Environmental Sciences, Korea University) ,  Lee, Kwang-Sik (Korea Basic Science Institute)

Abstract AI-Helper 아이콘AI-Helper

Abstract Headwater catchments make a considerable contribution to the discharge of whole stream networks and mean transit time (MTT) is a fundamental factor affecting flow and storage in the hydrologic system. We estimated the MTT along with the identification of subsurface water flow processes usi...

Keyword

참고문헌 (67)

  1. J. Am. Water Resour. Assoc. Alexander 43 41 2007 10.1111/j.1752-1688.2007.00005.x The role of headwater streams in downstream water quality 

  2. Water Resour. Res. Asano 48 W03512 2012 10.1029/2011WR010906 Flow path depth is the main controller of mean base flow transit times in a mountainous catchment 

  3. Geochim. Cosmochim. Acta Asano 67 1973 2003 10.1016/S0016-7037(02)01342-X Hydrologic and geochemical influences on the dissolved silica concentration in natural water in a steep headwater catchment 

  4. Japan. J. Hydrol. Asano 261 173 2002 10.1016/S0022-1694(02)00005-7 Residence times and flow paths of water in steep unchannelled catchments, Tanakami 

  5. J. Hydrol. Banks 404 30 2011 10.1016/j.jhydrol.2011.04.017 Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality 

  6. Hydrogeol. J. Cantafio 22 985 2014 10.1007/s10040-013-1088-7 Quantifying baseflow and water-quality impacts from a gravel dominated alluvial aquifer in an urban reach of a large Canadian river 

  7. Hydrol. Earth Syst. Sci. Cartwright 20 3581 2016 10.5194/hess-20-3581-2016 Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia 

  8. J. Am. Water Resour. Assoc. Freeman 43 5 2007 10.1111/j.1752-1688.2007.00002.x Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales 

  9. Water Resour. Res. Frisbee 47 W06512 2011 10.1029/2010WR009391 Streamflow generation in a large, alpine watershed in the southern Rocky Mountains of Colorado, USA: is streamflow generation simply the aggregation of hillslope runoff responses 

  10. J. Hydrol. Gabrielli 450 117 2012 10.1016/j.jhydrol.2012.05.023 The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales 

  11. Hydrol. Earth Syst. Sci. Gascuel-Odoux 14 1179 2010 10.5194/hess-14-1179-2010 Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment 

  12. Bioscience Gomi 52 905 2002 10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2 

  13. 10.1016/B978-0-444-42225-5.50008-5 Gonfiantini, R., 1986. Environmental isotopes in lake studies, in: Handbook of Environmental Isotope Geochemistry, The terrestrial Environment, B, edited by: Fritz, P. and Fontes, J. C., Elsevier, Amsterdam, pp. 113-168. 

  14. J. Hydrol. Gupta 337 80 2009 10.1016/j.jhydrol.2009.08.003 Decomposition of the mean squared error and NSE performance criteria: implication for improving hydrological modeling 

  15. Water Resour. Res. Hale 52 1358 2016 10.1002/2014WR016124 Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison 

  16. J. Hydrol. Hayashi 207 56 1998 10.1016/S0022-1694(98)00099-7 Water and solute transfer between a prairie wetland and adjacent upland, 2. Chloride cycle 

  17. J. Hydrol. Hofmann 561 557 2018 10.1016/j.jhydrol.2018.04.030 Estimating retention potential of headwater catchment using Tritium time series 

  18. Hydrol. Process. Hrachowitz 24 117 2010 10.1002/hyp.7510 Catchment transit times and landscape controls - does scale matter? 

  19. Econ. Environ. Geol. Jung 46 495 2013 10.9719/EEG.2013.46.6.495 Applications of isotope ratio infrared spectroscopy (IRIS) to analysis of stable isotopic compositions of liquid water 

  20. J. Soil Groundw. Environ. Jung 21 1 2016 10.7857/JSGE.2016.21.6.036 Estimation of stream discharge using antecedent precipitation index models in a small mountainous forested catchment: upper reach of Yongsucheon Stream, Gyeryongsan Mountain 

  21. Korea. J. Hydrol. Jung 573 267 2019 10.1016/j.jhydrol.2019.03.084 Using stable isotopes and tritium to delineate groundwater flow systems and their relationship to streams in the Geum River basin 

  22. Hydrol. Process. Kabeya 21 308 2007 10.1002/hyp.6231 Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan 

  23. Water Resour. Res. Katsuyama 45 2009 10.1029/2008WR007458 Elucidation of the relationship between geographic and time sources of stream water using a tracer approach in a headwater catchment 

  24. Hydrol. Process. Katsuyama 24 2287 2010 10.1002/hyp.7741 Connection between streamwater mean residence time and bedrock groundwater recharge/discharge dynamics in weathered granite catchments 

  25. Biogeochemistry Kelly 42 21 1998 10.1023/A:1005919306687 The effect of plant on mineral weathering 

  26. Kim, S.U., Yu, H.S., Woo, Y.-K., 1976. Geological map of Gongju, 1:50,000, KIGAM, 29 p (in Korean). 

  27. Hydrol. Process. Kim 28 1844 2014 10.1002/hyp.9722 Estimation of mean water transit time on a steep hillslope in South Korea using soil moisture measurements and deuterium excess 

  28. Nature Kirchner 403 524 2000 10.1038/35000537 Fractal stream chemistry and its implications for contaminant transport in catchments 

  29. Hydrol. Process. Kirchner 24 1631 2010 10.1002/hyp.7676 Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments 

  30. Korea Meteorological Administration (KMA), 2019. http://www.weather.go.kr. 

  31. Korea National Park Service (KNPS), 2010. Resource Monitoring of Gyeryong National Park, 51-67 (in Korean). 

  32. Korea National Park Service (KNPS), 2012. Nature Resources Investigation of Gyeryong National Park, The report of research of KNPS, 652 p (in Korean). 

  33. Korea Water Resources Corporation (KOWACO), 2002. Regional survey of groundwater in Geum River basin. 390 p (in Korean). 

  34. J. Geol. Soc. Korea Lee 35 73 1999 Oxygen and Hydrogen Isotopic Composition of Precipitation and River Waters in South Korea 

  35. Clim. Res. Lee 23 137 2003 10.3354/cr023137 Climatic controls on the stable isotopic composition of precipitation in Northeast Asia 

  36. J. Hydrol. Lee 229 190 2000 10.1016/S0022-1694(00)00158-X Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system 

  37. J. Chim. Phys. Majoube 68 1423 1971 10.1051/jcp/1971681423 Fractionnement en oxyg∼ne-18 et en deuterium entre l'eau et sa vapeur 

  38. J. Hydrol. Maloszewski 66 319 1983 10.1016/0022-1694(83)90193-2 Application of flow models in an alpine catchment area using tritium and deuterium data 

  39. J. Hydrol. Maloszewski 57 207 1982 10.1016/0022-1694(82)90147-0 Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability 

  40. Hydrol. Process. McDonnell 24 1745 2010 10.1002/hyp.7796 How old is streamwater? open questions in catchment transit time conceptualization, modelling and analysis 

  41. Hydrol. Process. McGlynn 17 175 2003 10.1002/hyp.5085 On the relationships between catchment scale and streamwater mean residence time 

  42. Water Resour. Res. McGuire 41 2005 10.1029/2004WR003657 The role of topography on catchment-scale water residence time 

  43. J. Hydrol. McGuire 330 543 2006 10.1016/j.jhydrol.2006.04.020 A review and evaluation of catchment transit time modeling 

  44. Hydrol. Process. McNamara 19 4023 2005 10.1002/hyp.5869 Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment 

  45. Trans. ASAE Moriasi 50 885 2007 10.13031/2013.23153 Model evaluation guidelines for systematic quantification of accuracy in watershed simulations 

  46. Hydrol. Earth Syst. Sci. Mueller 17 1661 2013 10.5194/hess-17-1661-2013 Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments 

  47. Hydrol. Earth Syst. Sci. Muñoz-Villers 20 1621 2016 10.5194/hess-20-1621-2016 Factors influencing stream baseflow transit times in tropical montane watersheds 

  48. Hydrol. Process. Pfister 31 1828 2017 10.1002/hyp.11134 Bedrock geology controls on catchment storage, mixing, and release: a comparative analysis of 16 nested catchments 

  49. Water Resour. Res. Rodhe 32 3497 1996 10.1029/95WR01806 Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input 

  50. J. Am. Water Resour. Assoc. Santhi 37 1169 2001 10.1111/j.1752-1688.2001.tb03630.x Validation of the SWAT model on a large river basin with point and nonpoint sources 

  51. Water Resour. Res. Scanlon 37 1071 2001 10.1029/2000WR900278 Modeling transport of dissolved silica in a forested headwater catchment: implications for defining the hydrochemical response of observed flow pathways 

  52. Hydrol. Process. Schaefli 21 2075 2007 10.1002/hyp.6825 Do Nash values have value? 

  53. J. Hydrol. Soulsby 325 197 2006 10.1016/j.jhydrol.2005.10.024 Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation 

  54. Hydrol. Process. Soulsby 23 3503 2009 10.1002/hyp.7501 Tracers and transit times: windows for viewing catchment scale storage? 

  55. Arctic Spence 53 237 2000 10.14430/arctic855 The effect of storage on runoff from a headwater sub-arctic Canadian Shield Basin 

  56. Water Resour. Res. Stewart 27 2681 1991 10.1029/91WR01569 Modelling base flow soil water residence times from deuterium concentrations 

  57. Hydrol. Process. Stewart 24 1646 2010 10.1002/hyp.7576 Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin 

  58. Hydrol. Process. Taniguchi 14 539 2000 10.1002/(SICI)1099-1085(20000228)14:3<539::AID-HYP953>3.0.CO;2-L Stable isotope studies of precipitation and river water in the Lake Biwa basin, Japan 

  59. Hydrol. Process. Tetzlaff 23 1874 2009 10.1002/hyp.7318 Inter-catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland 

  60. J. Hydrol. Tetzlaff 400 438 2011 10.1016/j.jhydrol.2011.01.053 Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchment 

  61. 10.1016/B978-0-444-81546-0.50028-8 Turner, J.V., Barnes, C.J., 1998. Modeling of isotope and hydrogeochemical responses in catchment hydrology. In: Isotope Tracers in Catchment Hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier, Amsterdam, pp.723-760. 

  62. Water Resour. Res. Uchida 39 1018 2003 10.1029/2002WR001298 Seepage area and rate of bedrock groundwater discharge at a granitic unchanneled hillslope 

  63. Water Resour. Res. Uhlenbrook 38 1096 2002 10.1029/2001WR000938 Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales 

  64. Appl. Geochem. Vitvar 12 787 1997 10.1016/S0883-2927(97)00045-0 Estimation of mean water residence times and runoff generation by180 measurements in a Pre-Alpine catchment (Rietholzbach, Eastern Switzerland) 

  65. Water Resour. Res. Viviroli 43 W07447 2007 10.1029/2006WR005653 Mountains of the world, water towers for humanity: typology, mapping, and global significance 

  66. Hydrol. Earth Sys. Sci. Zehe 14 873 2010 10.5194/hess-14-873-2010 Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains 

  67. 10.1016/B978-0-444-42225-5.50006-1 Zuber, A., 1986. Mathematical models for the interpretation of environmental radioisotopes in groundwater systems, in: Handbook of Environmental Isotope Geochemistry, The terrestrial Environment, B, edited by: Fritz, P. and Fontes, J. C., Elsevier, Amsterdam, pp. 1-59. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로