$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide

Journal of pharmaceutical investigation, v.49 no.6, 2019년, pp.643 - 654  

Al-azzawi, Shafq ,  Masheta, Dhafir

초록이 없습니다.

참고문헌 (51)

  1. Al-Azzawi S (2017) Improving Flurbiprofen brain-permeability and targeting in Alzheimer’s disease by using a novel dendronised ApoE-derived peptide carrier system. (PhD), University of Brighton. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.754004 . Accessed 15 July 2018 

  2. Int J Mol Sci S Al-Azzawi 2018 10.3390/ijms19103224 Al-Azzawi S, Masheta D, Guildford AL, Phillips G, Santin M (2018) Dendrimeric poly(epsilon-lysine) delivery systems for the enhanced permeability of flurbiprofen across the blood-brain barrier in Alzheimer’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms19103224 

  3. FEBS Lett C Bechara 587 12 1693 2013 10.1016/j.febslet.2013.04.031 Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587(12):1693-1702. https://doi.org/10.1016/j.febslet.2013.04.031 

  4. Peptides A Bolhassani 87 50 2017 10.1016/j.peptides.2016.11.011 Bolhassani A, Jafarzade B, Mardani G (2017) In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 87:50-63. https://doi.org/10.1016/j.peptides.2016.11.011 

  5. Biomaterials EJ Chung 35 4 1249 2014 10.1016/j.biomaterials.2013.10.064 Chung EJ, Cheng Y, Morshed R, Nord K, Han Y et al (2014) Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma. Biomaterials 35(4):1249-1256. https://doi.org/10.1016/j.biomaterials.2013.10.064 

  6. Dr Discov Today Technol C Cooley 9 1 e49 2012 10.1016/j.ddtec.2011.07.004 Cooley C, Wender P, Geihe E (2012) Beyond cell penetrating peptides: designed molecular transporters. Dr Discov Today Technol 9(1):e49-e55. https://doi.org/10.1016/j.ddtec.2011.07.004 

  7. J Pharm Sci AJ D’souza 93 8 1962 2004 10.1002/jps.20096 D’souza AJ, Topp EM (2004) Release from polymeric prodrugs: linkages and their degradation. J Pharm Sci 93(8):1962-1979. https://doi.org/10.1002/jps.20096 

  8. Ann Rev Nutr N Diop 2011 10.1146/annurev-nutr-072610-145133 Diop N, Zhao R, Visentin M, Goldman ID (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Ann Rev Nutr. https://doi.org/10.1146/annurev-nutr-072610-145133 

  9. J Control Rel S Dissanayake 250 62 2017 10.1016/j.jconrel.2017.02.006 Dissanayake S, Denny WA, Gamage S, Sarojini V (2017) Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Rel 250:62-76. https://doi.org/10.1016/j.jconrel.2017.02.006 

  10. Proc Natl Acad Sci A Dubikovskaya 105 34 12128 2008 10.1073/pnas.0805374105 Dubikovskaya A, Thorne H, Pillow H, Contag H, Wender A (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci 105(34):12128-12133. https://doi.org/10.1073/pnas.0805374105 

  11. Colloids Surf B Biointerfaces N Garg 146 114 2016 10.1016/j.colsurfb.2016.05.051 Garg N, Singh B, Jain A, Nirbhavane P, Sharma R et al (2016) Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B Biointerfaces 146:114-126. https://doi.org/10.1016/j.colsurfb.2016.05.051 

  12. Mol Biotechnol A Ghaz 57 3 201 2015 10.1007/s12033-014-9816-3 Ghaz A, Abbaspour F, Anarjan N, Berenjian A, Jafarizadeh H (2015) Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol 57(3):201-218. https://doi.org/10.1007/s12033-014-9816-3 

  13. Trends Pharmacol Sci G Guidotti 38 4 406 2017 10.1016/j.tips.2017.01.003 Guidotti G, Brambilla L, Rossi D (2017) Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 38(4):406-424. https://doi.org/10.1016/j.tips.2017.01.003 

  14. Scientific Reports Y Guo 6 28983 2016 10.1038/srep28983 Guo Y, Zhao Y, Li R, Wang T, Han M et al (2016) Methotrexate nanoparticles prepared with codendrimer from polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendrons: antitumor efficacy in vitro and in vivo. Scientific Reports 6:28983. https://doi.org/10.1038/srep28983 

  15. Biochim Biophys Acta P Guterstam 1788 12 2509 2009 10.1016/j.bbamem.2009.09.014 Guterstam P, Madani F, Hirose H, Takeuchi T, Futaki S et al (2009) Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim Biophys Acta 1788(12):2509-2517. https://doi.org/10.1016/j.bbamem.2009.09.014 

  16. Oncogene J Hutchinson 19 53 6130 2000 10.1038/sj.onc.1203970 Hutchinson J, Muller W (2000) Transgenic mouse models of human breast cancer. Oncogene 19(53):6130-6137. https://doi.org/10.1038/sj.onc.1203970 

  17. Bioorg Med Chem V Joncour 26 10 2797 2018 10.1016/j.bmc.2017.08.052 Joncour V, Laakkonen P (2018) Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 26(10):2797-2806. https://doi.org/10.1016/j.bmc.2017.08.052 

  18. Int J Nanomed D Kebebe 13 1425 2018 10.2147/ijn.s156616 Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z et al (2018) Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomed 13:1425-1442. https://doi.org/10.2147/ijn.s156616 

  19. Pharmaceuticals V Kersemans 3 3 600 2010 10.3390/ph3030600 Kersemans V, Cornelissen B (2010) Targeting the tumour: cell penetrating peptides for molecular imaging and radiotherapy. Pharmaceuticals 3(3):600-620. https://doi.org/10.3390/ph3030600 

  20. J Am Chem Soc H Lee 130 29 9364 2008 10.1021/ja710798b Lee H, Dubikovskaya E, Hwang H, Semyonov A, Wang H et al (2008) Single-molecule motions of oligoarginine transporter conjugates on the plasma membrane of Chinese hamster ovary cells. J Am Chem Soc 130(29):9364-9370. https://doi.org/10.1021/ja710798b 

  21. Biochem Pharmacol M Lindgren 71 4 416 2006 10.1016/j.bcp.2005.10.048 Lindgren M, Rosenthal-Aizman K, Saar K, Eiriksdottir E, Jiang Y et al (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71(4):416-425. https://doi.org/10.1016/j.bcp.2005.10.048 

  22. Yao Xue Xue Bao DX Ma 45 9 1165 2010 Ma DX, Qi XR (2010) Comparison of mechanisms and cellular uptake of cell-penetrating peptide on different cell lines. Yao Xue Xue Bao 45(9):1165-1169 

  23. J Biophys F Madani 2011 10.1155/2011/414729 Madani F, Lindberg S, Langel L et al (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. https://doi.org/10.1155/2011/414729 

  24. Int J Pept Res Ther M Mäe 15 11 11 2009 10.1007/s10989-008-9156-x Mäe M, Myrberg H, El-Andaloussi S (2009) Design of a tumor homing cell-penetrating peptide for drug delivery. Int J Pept Res Ther 15(11):11 

  25. Macromol Biosci S Meikle 11 12 1761 2011 10.1002/mabi.201100267 Meikle S, Perugini V, Guildford AL, Santin M (2011) Synthesis, characterisation and in vitro anti-angiogenic potential of dendron VEGF blockers. Macromol Biosci 11(12):1761-1765. https://doi.org/10.1002/mabi.201100267 

  26. Science RB Merrifield 150 3693 178 1965 10.1126/science.150.3693.178 Merrifield RB (1965) Automated synthesis of peptides. Science 150(3693):178-185. https://doi.org/10.1126/science.150.3693.178 

  27. J Immunol Methods T Mosmann 65 1-2 55 1983 10.1016/0022-1759(83)90303-4 Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55-63 

  28. Bioconjug Chem H Myrberg 19 1 70 2008 10.1021/bc0701139 Myrberg H, Zhang L, Mae M, Langel U (2008) Design of a tumor-homing cell-penetrating peptide. Bioconjug Chem 19(1):70-75. https://doi.org/10.1021/bc0701139 

  29. Curr Opin Pharmacol M Najlah 6 5 522 2006 10.1016/j.coph.2006.05.004 Najlah M, D’emanuele A (2006) Crossing cellular barriers using dendrimer nanotechnologies. Curr Opin Pharmacol 6(5):522-527. https://doi.org/10.1016/j.coph.2006.05.004 

  30. J G Virol J Park 83 5 1173 2002 10.1099/0022-1317-83-5-1173 Park J, Ryu J, Kim K, Lee H, Bahn J et al (2002) Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J G Virol 83(5):1173-1181. https://doi.org/10.1099/0022-1317-83-5-1173 

  31. Eur J Pharm Biopharm E Perez 93 52 2015 10.1016/j.ejpb.2015.03.018 Perez E, Fernandez A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52-79. https://doi.org/10.1016/j.ejpb.2015.03.018 

  32. Proc Natl Acad Sci USA J Pilch 103 8 2800 2006 10.1073/pnas.0511219103 Pilch J, Brown D, Komatsu M, Järvinen T, Yang M et al (2006) Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci USA 103(8):2800-2804. https://doi.org/10.1073/pnas.0511219103 

  33. Pharmacol Ther D Ramsey 154 78 2015 10.1016/j.pharmthera.2015.07.003 Ramsey D, Flynn H (2015) Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther 154:78-86. https://doi.org/10.1016/j.pharmthera.2015.07.003 

  34. Trends Mol Med D Raucher 21 9 560 2015 10.1016/j.molmed.2015.06.005 Raucher D, Ryu J (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21(9):560-570. https://doi.org/10.1016/j.molmed.2015.06.005 

  35. Pharmaceuticals (Basel) J Regberg 5 9 991 2012 10.3390/ph5090991 Regberg J, Srimanee A, Langel U (2012) Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel) 5(9):991-1007. https://doi.org/10.3390/ph5090991 

  36. J Biol Chem JP Richard 280 15 15300 2005 10.1074/jbc.M401604200 Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B et al (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280(15):15300-15306. https://doi.org/10.1074/jbc.M401604200 

  37. J Pep Sci H Rodríguez 16 3 136 2010 10.1002/psc.1209 Rodríguez H, Suarez M, Albericio F (2010) A convenient microwave-enhanced solid-phase synthesis of short chain N-methyl-rich peptides. J Pep Sci 16(3):136-140. https://doi.org/10.1002/psc.1209 doi 

  38. Adv Drug Deliv Rev E Ruoslahti 110-111 3 2017 10.1016/j.addr.2016.03.008 Ruoslahti E (2017) Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 110-111:3-12. https://doi.org/10.1016/j.addr.2016.03.008 

  39. J Biomed Mater Res A M Shin 102 2 575 2014 10.1002/jbm.a.34859 Shin M, Zhang J, Min K, Lee K, Byun Y et al (2014) Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 102(2):575-587. https://doi.org/10.1002/jbm.a.34859 

  40. R Silverman 2014 The organic chemistry of drug design and drug action 3 Silverman R, Holladay M (2014) The organic chemistry of drug design and drug action, 3rd ed. Elsevier, Oxford 

  41. Proc Natl Acad Sci USA D Simberg 104 3 932 2007 10.1073/pnas.0610298104 Simberg D, Duza T, Park JH, Essler M, Pilch J et al (2007) Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 104(3):932-936. https://doi.org/10.1073/pnas.0610298104 

  42. Org Biomol Chem M Soler 13 5 1470 2015 10.1039/c4ob01875c Soler M, Gonzalez-Bartulos M, Figueras E, Ribas X, Costas M et al (2015) Enzyme-triggered delivery of chlorambucil from conjugates based on the cell-penetrating peptide BP16. Org Biomol Chem 13(5):1470-1480. https://doi.org/10.1039/c4ob01875c 

  43. Org Biomol Chem D Soriano 12 10 1652 2014 10.1039/C3OB42422G Soriano D, Soler M, González-Bártulos M, Ribas X, Costas M et al (2014) Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Org Biomol Chem 12(10):1652-1663. https://doi.org/10.1039/C3OB42422G 

  44. Acc Chem Res E Stanzl 46 12 2944 2013 10.1021/ar4000554 Stanzl E, Trantow B, Vargas J, Wender P (2013) Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc Chem Res 46(12):2944-2954. https://doi.org/10.1021/ar4000554 

  45. Proc Natl Acad Sci USA V Torchilin 100 4 1972 2003 10.1073/pnas.0435906100 Torchilin V, Levchenko T, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B et al (2003) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 100(4):1972-1977. https://doi.org/10.1073/pnas.0435906100 

  46. Mol Pharm JR Vargas 11 8 2553 2014 10.1021/mp500161z Vargas JR, Stanzl EG, Teng NN, Wender PA (2014) Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol Pharm 11(8):2553-2565. https://doi.org/10.1021/mp500161z 

  47. J Biol Chem E Vives 272 25 16010 1997 10.1074/jbc.272.25.16010 Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010-16017 

  48. Proc Natl Acad Sci USA P Wender 97 24 13003 2000 10.1073/pnas.97.24.13003 Wender P, Mitchell D, Pattabiraman K, Pelkey E, Steinman L et al (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97(24):13003-13008. https://doi.org/10.1073/pnas.97.24.13003 

  49. WHO (2018) Cancer report. http://www.who.int/mediacentre/factsheets/fs297/en . Accessed 2 Oct 2018 

  50. ACS Chem Neurosci L Xu 5 1 2 2014 10.1021/cn400182z Xu L, Zhang H, Wu Y (2014) Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 5(1):2-13. https://doi.org/10.1021/cn400182z 

  51. Anti Cancer Agent N Zhao 18 1 74 2018 10.2174/1871520617666170419143459 Zhao N, Qin Y, Liu H, Cheng Z (2018) Tumor-targeting peptides: ligands for molecular imaging and therapy. Anti-cancer agents in medicinal chemistry-. Anti Cancer Agent 18(1):74-86. https://doi.org/10.2174/1871520617666170419143459 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로