최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Energies, v.13 no.10, 2020년, pp.2630 -
Lee, Dongkyoung (Department of Mechanical and Automotive Engineering, Kongju National University, Cheonan 31080, Korea) , Suk, Jungdon (Energy Materials Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Korea)
Lithium-ion batteries are actively used for many applications due to many advantages. Although electrodes are important during laser cutting, most laser cutting studies use commercially available electrodes. Thus, effects of electrodes characteristics on laser cutting have not been effectively studi...
Alamgir, M., and Sastry, A.M. (2008, October 20). Efficient Batteries for Transportation Applications. Available online: https://www.sae.org/publications/technical-papers/content/2008-21-0017/.
Nitta Li-ion battery materials: Present and future Mater. Today 2015 10.1016/j.mattod.2014.10.040 18 252
Chen Recent Progress in Advanced Materials for Lithium Ion Batteries Materials 2013 10.3390/ma6010156 6 156
Ogihara Synthesis of Li2Ti3O7 Anode Materials by Ultrasonic Spray Pyrolysis and Their Electrochemical Properties Materials 2013 10.3390/ma6062285 6 2285
Suk Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance for lithium-ion batteries J. Mater. Chem. A 2014 10.1039/c3ta14645f 2 2478
10.3390/ma11010049 Giuli, G., Eisenmann, T., Bresser, D., Trapananti, A., Asenbauer, J., Mueller, F., and Passerini, S. (2017). Structural and Electrochemical Characterization of Zn1−xFexO-Effect of Aliovalent Doping on the Li+ Storage Mechanism. Materials, 11.
10.3390/ma11010096 Yuan, G., Xiang, J., Jin, H., Wu, L., Jin, Y., and Zhao, Y. (2018). Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries. Materials, 11.
10.3390/met6110269 Qiu, S., Huang, J., Chu, H., Zou, Y., Xiang, C., Yan, E., Xu, F., and Sun, L. (2016). The Co-B Amorphous Alloy: A High Capacity Anode Material for an Alkaline Rechargeable Battery. Metals, 6.
10.3390/met8040252 Wang, Z., Zhang, X., Zhang, Y., Li, M., Qin, C., and Bakenov, Z. (2018). Chemical Dealloying Synthesis of CuS Nanowire-on-Nanoplate Network as Anode Materials for Li-Ion Batteries. Metals, 8.
Suk Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries J. Power Sources 2016 10.1016/j.jpowsour.2016.10.008 334 154
10.3390/ma11020278 Lee, D., and Pyo, S. (2018). Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar. Materials, 11.
Lee Investigation of Laser Ablation on Acrylonitrile Butadiene Styrene Plastic Used for 3D Printing J. Weld. Join. 2018 10.5781/JWJ.2018.36.1.6 36 50
10.3390/met8040211 Lee, D. (2018). Experimental Investigation of Laser Ablation Characteristics on Nickel-Coated Beryllium Copper. Metals, 8.
Lee Application of laser spot cutting on spring contact probe for semiconductor package inspection Opt. Laser Technol. 2017 10.1016/j.optlastec.2017.06.005 97 90
10.3390/met7110456 Spena, P.R. (2017). CO2 Laser Cutting of Hot Stamping Boron Steel Sheets. Metals, 7.
10.3390/ma11081423 Lee, D. (2018). Understanding of BeCu Interaction Characteristics with a Variation of ns Laser-Pulse Duration. Materials, 11.
10.3390/app9010205 Lee, D., Oh, B., and Suk, J. (2019). The Effect of Compactness on Laser Cutting of Cathode for Lithium-Ion Batteries Using Continuous Fiber Laser. Appl. Sci., 9.
Lee Picosecond IR Pulsed Laser Drilling of Copper-Coated Glass/Epoxy Composite IEEE Trans. Compon. Packag. Manuf. Technol. 2017 10.1109/TCPMT.2017.2763127 7 2066
10.3390/ma11071055 Lee, D., Seo, Y., and Pyo, S. (2018). Effect of Laser Speed on Cutting Characteristics of Cement-Based Materials. Materials, 11.
10.3390/app8020266 Lee, D. (2018). Investigation of Physical Phenomena and Cutting Efficiency for Laser Cutting on Anode for Li-Ion Batteries. Appl. Sci., 8.
Lee Dataset demonstrating effects of momentum transfer on sizing of current collector for lithium-ion batteries during laser cutting Data Brief 2017 10.1016/j.dib.2017.12.021 17 6
Lee Effects of momentum transfer on sizing of current collectors for lithium-ion batteries during laser cutting Opt. Laser Technol. 2018 10.1016/j.optlastec.2017.09.016 99 315
10.3390/app7090914 Lee, D., and Ahn, S. (2017). Investigation of Laser Cutting Width of LiCoO2 Coated Aluminum for Lithium-Ion Batteries. Appl. Sci., 7.
Lee Three dimensional simulation of high speed remote laser cutting of cathode for lithium-ion batteries J. Laser Appl. 2016 10.2351/1.4950908 28 32010
Lee Parameter optimization for high speed remote laser cutting of electrodes for lithium-ion batteries J. Laser Appl. 2016 10.2351/1.4942044 28 22006
Lee Effects of laser beam spatial distribution on laser-material interaction J. Laser Appl. 2016 10.2351/1.4947096 28 32003
Lee Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries J. Power Sources 2012 10.1016/j.jpowsour.2012.03.030 210 327
Lee High speed remote laser cutting of electrodes for lithium-ion batteries: Anode J. Power Sources 2013 10.1016/j.jpowsour.2012.10.096 240 368
Lutey Laser cutting of lithium iron phosphate battery electrodes: Characterization of process efficiency and quality Opt. Laser Technol. 2015 10.1016/j.optlastec.2014.07.023 65 164
Lutey High speed pulsed laser cutting ofLiCoO2Li-ion battery electrodes Opt. Laser Technol. 2017 10.1016/j.optlastec.2017.03.022 94 90
10.1016/j.jpowsour.2012.10.096 Lee, D., and Mazumder, J. (2012). Modeling of High Speed Remote Laser Cutting of Electrodes for Lithium-Ion Batteries, University of Michigan.
Mazumder, J., Lee, D., Tübke, J., Pinkwart, K., Herfurth, H., and Patwa, R. (2011). High Speed Laser Cutting of Electrodes for Lithium Ion Batteries. Collaboration of the University of Michigan and Fraunhofer-Progress Report, University of Michigan.
Lee, D. (2016). Modeling of High Speed Remote Laser Cutting for Lithium-Ion Batteries, Scholar’s Press.
Zerlaut Multiple-integrating sphere spectrophotometer for measuring absolute spectral reflectance and transmittance Appl. Opt. 1981 10.1364/AO.20.003797 20 3797
Lavine, A.S., Incropera, F.P., and DeWitt, D.P. (2011). Fundamentals of Heat and Mass Transfer, Wiley. [7th ed.].
Tello Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region J. Appl. Phys. 2014 10.1063/1.4894169 116 093508
Tello Experimental verification of the anomalous skin effect in copper using emissivity measurements Appl. Phys. Lett. 2013 10.1063/1.4811755 102 244106
Tello Spectral emissivity of copper and nickel in the mid-infrared range between 250 and 900 °C Int. J. Heat Mass Transf. 2014 10.1016/j.ijheatmasstransfer.2013.12.063 71 549
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.