최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Energies, v.13 no.15, 2020년, pp.3832 -
Park, Cheong Hee (Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea) , Kim, Taegong (Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea)
Energy theft refers to the intentional and illegal usage of electricity by various means. A number of studies have been conducted on energy theft detection in the advanced metering infrastructure using machine learning methods. However, applying machine learning for energy theft detection has a prob...
Glauner The challenge of Non-technical loss detection using artificial intelligence: A survey Int. J. Comput. Intell. Syst. 2017 10.2991/ijcis.2017.10.1.51 10 760
Rossoni, A., Trevizan, R., Bretas, A., Gazzana, D., Bettiol, A., Carniato, A., Passos, L., and Martin, R. (2015, January 15-18). Hybrid formulation for technical and non-technical losses estimation and identification in distribution networks: Application in a Brazilian power system. Proceedings of the 23rd International Conference on Electricity Distribution, Lyon, France.
McLaughlin, S., Podkuiko, D., and McDaniel, P. (October, January 30). Energy theft in the advanced metering infrastructure. Proceedings of the 4th International Conference on Critical Information Infrastructures Security, Bonn, Germany.
Jindal Decision tree and SVM-based data analytics for theft detection in smart grid IEEE Trans. Ind. Inform. 2016 10.1109/TII.2016.2543145 12 1005
McLaughlin A multi-sensor energy theft detection framework for advanced metering infrastructures IEEE J. Sel. Areas Commun. 2013 10.1109/JSAC.2013.130714 31 1319
Jokar Electricity theft detection in AMI using customers’ consumption patterns IEEE Trans. Smart Grid 2016 10.1109/TSG.2015.2425222 7 216
Angelos Detection and identification of abnormalities in customer consumptions in power distribution systems IEEE Trans. Power Deliv. 2011 10.1109/TPWRD.2011.2161621 26 2436
Park Outlier and anomaly pattern detection on data streams J. Supercomput. 2019 10.1007/s11227-018-2674-1 75 6118
Kim Anomaly pattern detection for streaming data Expert Syst. Appl. 2020 10.1016/j.eswa.2020.113252 149 113252
(2020, January 20). Irish Social Science Data Archive. Available online: http://www.ucd.ie/issda/data/commissionforenergyregulationcer/.
Jiang Energy-Theft Detection Issues for Advanced Metering Infrastructure in Smart Grid Tsinghua Sci. Technol. 2014 10.1109/TST.2014.6787363 19 105
Nagi Nontechnical loss detection for metered customers in power utility using support vector machines IEEE Trans. Power Deliv. 2010 10.1109/TPWRD.2009.2030890 25 1162
Nagi Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system IEEE Trans. Power Deliv. 2011 10.1109/TPWRD.2010.2055670 26 1284
Martino, M., Decia, F., Molinelli, J., and Fernandez, A. (2012, January 6-8). Improving electric fraud detection using class imbalance strategies. Proceedings of the ICPRAM, Vilamoura, Portugal.
10.3390/en12173310 Hasan, M., Toma, R., Nahid, A., Islam, M., and Kim, H. (2019). Electricity theft detection in smart grid systems: A CNN-LSTM based approach. Energies, 12.
Zheng Wide & Deep convolutional neural networks for electricity-theft detection to secure smart grids IEEE Trans. Ind. Inform. 2018 10.1109/TII.2017.2785963 14 1606
Tan, P., Steinbach, M., and Kumar, V. (2006). Introduction to Data Mining, Pearson Addison Wesley.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.