$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effect of Oxygen for Enhancing the Gas Storage Performance of Activated Green Carbon 원문보기

Energies, v.13 no.15, 2020년, pp.3893 -   

Jang, Hyun-Seok (Department of Physics, Incheon National University, Incheon 22012, Korea) ,  Lee, Chang Yeon (Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea) ,  Jeon, Jun Woo (Department of Physics, Incheon National University, Incheon 22012, Korea) ,  Jung, Won Taek (Department of Physics, Incheon National University, Incheon 22012, Korea) ,  Hong, Won G. (Research Center for Materials Analysis, Korea Basic Science Institution, Daejeon 34144, Korea) ,  Lee, Sang Moon (Research Center for Materials Analysis, Korea Basic Science Institution, Daejeon 34144, Korea) ,  Kim, Haejin (Research Center for Materials Analysis, Korea Basic Science Institution, Daejeon 34144, Korea) ,  Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea) ,  Kim, Byung Hoon (Department of Physics, Incheon National University, Incheon 22012, Korea)

Abstract AI-Helper 아이콘AI-Helper

We investigated the gas storage capacity of thermally carbonized and chemically activated Phyllostachys bambusoides (PB), which is a nature-derived green carbon with an organic porous structure. Samples were thermally treated at 900 °C for 24 h, and then were chemically activated with different ...

참고문헌 (63)

  1. US DOE (2016). The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan, US Department of Energy. Technical Report. 

  2. Elam, C.C. (1996). IEA Agreement on the Production and Utilization of Hydrogen, National Renewable Energy Laboratory. USA Annual Report. 

  3. Satyapal The US Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements Catal. Today 2007 10.1016/j.cattod.2006.09.022 120 246 

  4. Hao Novel porous solids for carbon dioxide capture J. Mater. Chem. 2011 10.1039/c0jm03564e 21 6447 

  5. Rashidi An overview of activated carbons utilization for the post-combustion carbon dioxide capture J. CO2 Util. 2016 10.1016/j.jcou.2015.11.002 13 1 

  6. Smit Carbon dioxide capture: Prospects for new materials Angew. Chem. Int. Ed. 2010 10.1002/anie.201000431 49 6058 

  7. Calo Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen Carbon 2007 10.1016/j.carbon.2007.08.021 45 2529 

  8. Teng High-porosity carbons prepared from bituminous coal with potassium hydroxide activation Ind. Eng. Chem. Res. 1999 10.1021/ie990101+ 38 2947 

  9. Garche Hydrogen storage by carbon materials J. Power Sources 2006 10.1016/j.jpowsour.2006.03.047 159 781 

  10. Nijkamp Hydrogen storage using physisorption-materials demands Appl. Phys. A 2001 10.1007/s003390100847 72 619 

  11. Dillon Hydrogen storage using carbon adsorbents: Past, present and future Appl. Phys. A 2001 10.1007/s003390100788 72 133 

  12. Patel Carbon dioxide capture adsorbents: Chemistry and methods ChemSusChem 2017 10.1002/cssc.201601545 10 1303 

  13. Choi Adsorbent materials for carbon dioxide capture from large anthropogenic point sources Chemsuschem Chem. Sustain. Energy Mater. 2009 2 796 

  14. Sevilla Optimization of the pore structure of biomass-based carbons in relation to their use for CO2 capture under low-and high-pressure regimes ACS Appl. Mater. Interfaces 2018 10.1021/acsami.7b10433 10 1623 

  15. Singh Biomass derived porous carbon for CO2 capture Carbon 2019 10.1016/j.carbon.2019.03.050 148 164 

  16. Zhang Designed porous carbon materials for efficient CO2 adsorption and separation New Carbon Mater. 2015 10.1016/S1872-5805(15)60203-7 30 481 

  17. Narkiewicz Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon J. Chem. Eng. Data 2015 10.1021/acs.jced.5b00294 60 3148 

  18. Narkiewicz Modification of Commercial Activated Carbons for CO2 Adsorption Acta Phys. Pol. A 2016 10.12693/APhysPolA.129.394 129 394 

  19. Advances in modification of commercial activated carbon for enhancement of CO2 capture Appl. Surf. Sci. 2019 10.1016/j.apsusc.2019.07.108 494 137 

  20. Casco Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure Carbon 2014 10.1016/j.carbon.2013.09.086 67 230 

  21. Jimenez CO2 capture in different carbon materials Environ. Sci. Technol. 2012 10.1021/es2046553 46 7407 

  22. Xia Porous carbon-based materials for hydrogen storage: Advancement and challenges J. Mater. Chem. A 2013 10.1039/c3ta10583k 1 9365 

  23. Liu Enhanced hydrogen storage performance of three-dimensional hierarchical porous graphene with nickel nanoparticles Int. J. Hydrog. Energy 2018 10.1016/j.ijhydene.2018.04.202 43 11120 

  24. Jia Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2 Phys. Chem. Chem. Phys. 2013 10.1039/c3cp50515d 15 5814 

  25. Zlotea Ultrasmall MgH2 nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics J. Phys. Chem. C 2015 10.1021/acs.jpcc.5b05754 119 18091 

  26. Kim Thermally modulated multilayered graphene oxide for hydrogen storage Phys. Chem. Chem. Phys. 2012 10.1039/C2CP23683D 14 1480 

  27. Kim Investigation on the existence of optimum interlayer distance for H2 uptake using pillared-graphene oxide Int. J. Hydrog. Energy 2012 10.1016/j.ijhydene.2012.07.029 37 14217 

  28. Wang KOH activation of carbon-based materials for energy storage J. Mater. Chem. 2012 10.1039/c2jm34066f 22 23710 

  29. Wang High hydrogen storage capacity of porous carbons prepared by using activated carbon J. Am. Chem. Soc. 2009 10.1021/ja8083225 131 7016 

  30. Otowa Development of KOH activated high surface area carbon and its application to drinking water purification Carbon 1997 10.1016/S0008-6223(97)00076-6 35 1315 

  31. Sircar Activated carbon for gas separation and storage Carbon 1996 10.1016/0008-6223(95)00128-X 34 1 

  32. About reactions occurring during chemical activation with hydroxides Carbon 2004 10.1016/j.carbon.2004.01.008 42 1371 

  33. Kim Energy storage of thermally reduced graphene oxide Int. J. Hydrog. Energy 2014 10.1016/j.ijhydene.2013.12.144 39 3799 

  34. Shin Optimum interlayer distance for hydrogen storage in pillared-graphene oxide determined by H2 pressure-dependent electrical conductance Int. J. Hydrog. Energy 2018 10.1016/j.ijhydene.2018.07.010 43 16136 

  35. Khalil Bamboo fibre reinforced biocomposites: A review Mater. Des. 2012 10.1016/j.matdes.2012.06.015 42 353 

  36. Genovese High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob J. Mater. Chem. A 2015 10.1039/C4TA06110A 3 2903 

  37. Jang The performance of green carbon as a backbone for hydrogen storage materials Int. J. Hydrog. Energy 2020 10.1016/j.ijhydene.2019.03.084 45 10516 

  38. Bhuiyan Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions J. Wood Sci. 2000 10.1007/BF00765800 46 431 

  39. Cho Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein Nat. Commun. 2015 10.1038/ncomms8145 6 7145 

  40. Liu Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins Carbon 1996 10.1016/0008-6223(96)00177-7 34 193 

  41. Agarwal Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana) Planta 2006 10.1007/s00425-006-0295-z 224 1141 

  42. Zhan Electronic structure of graphite oxide and thermally reduced graphite oxide Carbon 2011 10.1016/j.carbon.2010.12.002 49 1362 

  43. Botas Thermally reduced graphite oxide as positive electrode in vanadium redox flow batteries Carbon 2012 10.1016/j.carbon.2011.09.041 50 828 

  44. Wollbrink Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity Carbon 2016 10.1016/j.carbon.2016.04.062 106 93 

  45. Tuinstra Raman spectrum of graphite J. Chem. Phys 1970 10.1063/1.1674108 53 1126 

  46. Dresselhaus Lattice-dynamical model for graphite Phys. Rev. B 1982 10.1103/PhysRevB.26.4514 26 4514 

  47. Wang Raman spectroscopy of carbon materials: Structural basis of observed spectra Chem. Mater. 1990 10.1021/cm00011a018 2 557 

  48. Sadezky Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information Carbon 2005 10.1016/j.carbon.2005.02.018 43 1731 

  49. Cuesta Raman microprobe studies on carbon materials Carbon 1994 10.1016/0008-6223(94)90148-1 32 1523 

  50. Jawhari Raman spectroscopic characterization of some commercially available carbon black materials Carbon 1995 10.1016/0008-6223(95)00117-V 33 1561 

  51. Dippel Soot characterization in atmospheric particles from different sources by NIR FT Raman spectroscopy J. Aerosol Sci. 1999 10.1016/S0021-8502(99)80464-9 30 S907 

  52. Boehm Surface oxides on carbon and their analysis: A critical assessment Carbon 2002 10.1016/S0008-6223(01)00165-8 40 145 

  53. Zhou Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR Carbon 2007 10.1016/j.carbon.2006.11.019 45 785 

  54. Zielke Surface-oxidized carbon fibers: I. Surface structure and chemistry Carbon 1996 10.1016/0008-6223(96)00032-2 34 983 

  55. Boehm Some aspects of the surface chemistry of carbon blacks and other carbons Carbon 1994 10.1016/0008-6223(94)90031-0 32 759 

  56. Zhao Synthesis of bamboo-based activated carbons with super-high specific surface area for hydrogen storage BioResources 2017 10.15376/biores.12.1.1246-1262 12 1246 

  57. Wei Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores ChemSusChem 2012 10.1002/cssc.201200570 5 2354 

  58. Gogotsi Importance of pore size in high-pressure hydrogen storage by porous carbons Int. J. Hydrog. Energy 2009 10.1016/j.ijhydene.2009.05.073 34 6314 

  59. Rzepka Physisorption of hydrogen on microporous carbon and carbon nanotubes J. Phys. Chem. B 1998 10.1021/jp9829602 102 10894 

  60. Singh Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers Proc. Natl. Acad. Sci. USA 2006 10.1073/pnas.0509009103 103 3357 

  61. Aga Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption Phys. Rev. B 2007 10.1103/PhysRevB.76.165404 76 165404 

  62. Cabria Hydrogen storage capacities of nanoporous carbon calculated by density functional and Møller-Plesset methods Phys. Rev. B 2008 10.1103/PhysRevB.78.075415 78 075415 

  63. Jelea Quantum study of hydrogen-oxygen-graphite interactions Carbon 2004 10.1016/j.carbon.2004.08.001 42 3189 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로