$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Design and Implementation of a Wireless Charging-Based Cardiac Monitoring System Focused on Temperature Reduction and Robust Power Transfer Efficiency 원문보기

Energies, v.13 no.4, 2020년, pp.1008 -   

Kim, Dongwook (The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Jeong, Dawon (The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Kim, Jongwook (The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Kim, Haerim (The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Kim, Junho (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea) ,  Park, Sung-Min (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea) ,  Ahn, Seungyoung (The Cho Chun Shik Graduate School for Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea)

Abstract AI-Helper 아이콘AI-Helper

Wireless power transfer systems are increasingly used as a means of charging implantable medical devices. However, the heat or thermal radiation from the wireless power transfer system can be harmful to biological tissue. In this research, we designed and implemented a wireless power transfer system...

참고문헌 (28)

  1. Shiba Design and development of low-loss transformer for powering small implantable medical devices IEEE Trans. Biomed. Circuits Syst. 2010 10.1109/TBCAS.2009.2034364 4 77 

  2. Seo Deep ECG-respiration network (DeepER net) for recognizing mental stress Sensors (Switzerland) 2019 10.3390/s19133021 19 1 

  3. Kim Magnetic resonant wireless power transfer for propulsion of implantable micro-robot J. Appl. Phys. 2015 10.1063/1.4918963 117 17E712 

  4. 10.1126/scirobotics.aam6431 Li, J., De Ávila, B.E., Gao, W., Zhang, L., and Wang, J. (2017). Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 1-10. 

  5. Kim Generation of Magnetic Propulsion Force and Torque for Microrobot Using Wireless Power Transfer Coil IEEE Trans. Magn. 2015 10.1109/TMAG.2015.2440752 51 2 

  6. Xu Soft microfluidic assemblies of sensors, circuits, and radios for the skin Science 2014 10.1126/science.1250169 344 70 

  7. Zheng Ideas and Challenges for Securing Wireless Implantable Medical Devices: A Review IEEE Sens. J. 2017 10.1109/JSEN.2016.2633973 17 562 

  8. Bazaka Implantable devices: Issues and challenges Electronics 2013 10.3390/electronics2010001 2 1 

  9. Wu A 13.56 MHz 40 mW CMOS high-efficiency inductive link power supply utilizing on-chip delay-compensated voltage doubler rectifier and multiple ldos for implantable medical devices IEEE J. Solid-State Circuits 2014 10.1109/JSSC.2014.2356459 49 2397 

  10. Hwang 6.78 MHz resonance coupling for implantable medical devices BMEiCON 2015-8th Biomed. Eng. Int. Conf. 2016 2 1 

  11. 10.3390/en12142720 Campi, T., Cruciani, S., De Santis, V., Maradei, F., and Feliziani, M. (2019). Near field wireless powering of deep medical implants. Energies, 12. 

  12. Kim Propulsion and Rotation of Microrobot Based on a Force on a Magnetic Material in a Time-Varying Magnetic Field Using a Wireless Power Transfer System IEEE Trans. Magn. 2020 10.1109/TMAG.2019.2948065 56 1 

  13. Campi Wireless power transfer charging system for AIMDs and pacemakers IEEE Trans. Microw. Theory Tech. 2016 10.1109/TMTT.2015.2511011 64 633 

  14. Pavelec A novel implantable device for the treatment of obstructive sleep apnea: Clinical safety and feasibility Nat. Sci. Sleep 2016 8 137 

  15. Tokudaiji AC Resistance Reduction of a Flexible Wireless Power Transmission Coil Using Magnetic Path Control Technology at 13.56 MHz IEEE Trans. Magn. 2019 10.1109/TMAG.2019.2895239 55 1 

  16. (2017). Implants for Surgery-Active Implantable Medical Devices-Part 3: Implantable Neurostimulators, International Standard, rev.. [2nd ed.]. 

  17. Lee, J.H. (2015). Human Implantable Arrhythmia Monitoring Sensor with Wireless Power and Data Transmission Technique. Austin J. Biosens. Bioelectron. 

  18. 10.3390/s17122905 Heo, J.C., Kim, B., Kim, Y.N., Kim, D.K., and Lee, J.H. (2017). Induction of inflammation in vivo by electrocardiogram sensor operation using wireless power transmission. Sensors, 17. 

  19. Wu Design and characterization of wireless power links for brain-machine interface applications IEEE Trans. Power Electron. 2014 10.1109/TPEL.2014.2301173 29 5462 

  20. Jow Modeling and optimization of printed spiral coils in Air, Saline, and Muscle tissue environments IEEE Trans. Biomed. Circuits Syst. 2009 10.1109/TBCAS.2009.2025366 3 339 

  21. Khripkov Integrated resonant structure for simultaneous wireless power transfer and data telemetry IEEE Antennas Wireless Propag. Lett. 2012 10.1109/LAWP.2013.2238602 11 1659 

  22. Xue High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation IEEE Trans. Circuits Syst. I Reg. Papers 2013 10.1109/TCSI.2012.2209297 60 867 

  23. Monti Resonant inductive link for remote power of pacemakers, IEEE Trans Microw. Theory Techn. 2015 10.1109/TMTT.2015.2481387 63 3814 

  24. Sun Ultracompact implantable design with integrated wireless power transfer and RF transmission capabilities, IEEE Trans Biomed. Circuits Syst. 2018 10.1109/TBCAS.2017.2787649 12 281 

  25. 10.1109/INTLEC.2011.6099774 Chopra, S., and Bauer, P. (2011). Analysis and design considerations for a contactless power transfer system. INTELEC Int. Telecommun. Energy Conf., 1-6. 

  26. Lu S-PS resonant topology of WPT system for implantable spinal cord stimulator IET Power Electron. 2018 10.1049/iet-pel.2018.5485 11 2499 

  27. Aditya Comparative study of series-series and series-parallel topology for long track EV charging application IEEE Transp. Electrif. Conf. Expo Components, Syst. Power Electron. - From Technol. to Bus. Public Policy ITEC 2014 2014 1 

  28. Gati Comparison of series compensation topologies for inductive chargers of biomedical implantable devices Electronics 2019 10.3390/electronics9010008 9 1 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로