$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries

Energy storage materials, v.25, 2020년, pp.764 - 781  

Shin, Jaewook ,  Kim, Tae-Hee ,  Lee, Yongju ,  Cho, EunAe

초록이 없습니다.

참고문헌 (260)

  1. Till Bunsen 2018 Global EV Outlook 

  2. Stanley 2017 Auto Industry Braces for Electric Shock 

  3. Desjardins 2018 Visualizing the Rise of the Electric Vehicle 

  4. Adv Energy Mater Chae 7 15 2017 10.1002/aenm.201700071 One-to-One comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries 

  5. Nat. Commun. Son 6 2015 10.1038/ncomms8393 Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density 

  6. Nano Energy Zuo 31 113 2017 10.1016/j.nanoen.2016.11.013 Silicon based lithium-ion battery anodes: a chronicle perspective review 

  7. Ruoff 30 2015 Charged Electric Vehicles Magazine Tesla tweaks its battery chemistry: a closer look at silicon anode development 

  8. Prog. Mater. Sci. Mukhopadhyay 63 58 2014 10.1016/j.pmatsci.2014.02.001 Deformation and stress in electrode materials for Li-ion batteries 

  9. Abstr. Pap. Am. Chem. Soc. Lucht 248 2014 Advances in electrolytes for lithium ion batteries: a mechanistic understanding 

  10. J. Electrochem. Soc. Nguyen 161 12 A1933 2014 10.1149/2.0731412jes Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries 

  11. ACS Nano Liu 6 2 1522 2012 10.1021/nn204476h Size-dependent fracture of silicon nanoparticles during lithiation 

  12. ACS Nano Gu 6 9 8439 2012 10.1021/nn303312m In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix 

  13. Nano Lett. Liu 12 6 3315 2012 10.1021/nl3014814 A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes 

  14. Angew. Chem. Int. Ed. Kim 47 52 10151 2008 10.1002/anie.200804355 Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries 

  15. Ecs Electrochem Lett Yersak 4 3 A33 2015 10.1149/2.0011503eel Preparation of mesoporous Si@PAN electrodes for Li-ion batteries via the in-situ polymerization of PAN 

  16. J. Power Sources Chan 189 2 1132 2009 10.1016/j.jpowsour.2009.01.007 Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes 

  17. Acs Appl Mater Inter Schroder 6 23 21510 2014 10.1021/am506517j Role of surface oxides in The formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries 

  18. J. Mater. Chem. Shobukawa 4 39 15117 2016 10.1039/C6TA06447G Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis(fluorosulfonyl)imide-based ionic liquid 

  19. Z. Phys. Chem. Winter 223 10-11 1395 2009 The solid electrolyte interphase - the most important and the least understood solid electrolyte in rechargeable Li batteries 

  20. J. Mater. Chem. Oumellal 21 17 6201 2011 10.1039/c1jm10213c The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries 

  21. Nat. Nanotechnol. Wu 7 5 309 2012 10.1038/nnano.2012.35 Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control 

  22. Chem. Rev. Xu 104 10 4303 2004 10.1021/cr030203g Nonaqueous liquid electrolytes for lithium-based rechargeable batteries 

  23. J. Electrochem. Soc. Zhang 148 12 A1341 2001 10.1149/1.1415547 Electrochemical and infrared studies of the reduction of organic carbonates 

  24. J. Electrochem. Soc. Peled 164 7 A1703 2017 10.1149/2.1441707jes Review-SEI: past, present and future 

  25. J. Electrochem. Soc. Peled 144 8 L208 1997 10.1149/1.1837858 Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes 

  26. J. Power Sources Benedek 110 2 406 2002 10.1016/S0378-7753(02)00204-5 Lithium reactions with intermetallic-compound electrodes 

  27. Phys. Rev. Lett. Chon 107 4 2011 10.1103/PhysRevLett.107.045503 Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon 

  28. Nano Today Wu 7 5 414 2012 10.1016/j.nantod.2012.08.004 Designing nanostructured Si anodes for high energy lithium ion batteries 

  29. Langmuir Etacheri 28 1 965 2012 10.1021/la203712s Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes 

  30. J. Phys. Chem. C Nie 117 26 13403 2013 10.1021/jp404155y Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy 

  31. Chem. Mater. Philippe 24 6 1107 2012 10.1021/cm2034195 Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy 

  32. Chem. Mater. Philippe 25 3 394 2013 10.1021/cm303399v Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries - a photoelectron spectroscopy study 

  33. J. Power Sources Chan 189 1 34 2009 10.1016/j.jpowsour.2008.12.047 Structural and electrochemical study of the reaction of lithium with silicon nanowires 

  34. Acs Appl Mater Inter Lindgren 8 24 15758 2016 10.1021/acsami.6b02650 SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries 

  35. Chem. Mater. Xu 27 7 2591 2015 10.1021/acs.chemmater.5b00339 Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive 

  36. J. Electrochem. Soc. Jung 163 8 A1705 2016 10.1149/2.0951608jes Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries 

  37. J. Am. Chem. Soc. Jin 140 31 9854 2018 10.1021/jacs.8b03408 Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy 

  38. Phys. Chem. Chem. Phys. de la Hoz 16 32 17091 2014 10.1039/C4CP01948B Reduction mechanisms of additives on Si anodes of Li-ion batteries 

  39. Chem. Commun. Veith 50 23 3081 2014 10.1039/c3cc49269a Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes 

  40. J. Phys. Chem. C Perez-Beltran 119 29 16424 2015 10.1021/acs.jpcc.5b02992 First-principles calculations of lithiation of a hydroxylated surface of amorphous silicon dioxide 

  41. Electrochim. Acta Verma 55 22 6332 2010 10.1016/j.electacta.2010.05.072 A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries 

  42. Electrochim. Acta Malmgren 97 23 2013 10.1016/j.electacta.2013.03.010 Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy 

  43. J. Power Sources Peled 97-8 52 2001 10.1016/S0378-7753(01)00505-5 Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies 

  44. J. Power Sources Abe 184 2 449 2008 10.1016/j.jpowsour.2008.03.037 Functional electrolytes: synergetic effect of electrolyte additives for lithium-ion battery 

  45. Nat. Commun. Ogata 5 2014 10.1038/ncomms4217 Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy 

  46. Acs Sustain Chem Eng Yang 5 11 9972 2017 10.1021/acssuschemeng.7b01914 A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation 

  47. J. Phys. Chem. C Veith 119 35 20339 2015 10.1021/acs.jpcc.5b06817 Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode 

  48. Acs Appl Mater Inter Tokranov 6 9 6672 2014 10.1021/am500363t In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries 

  49. Phys. Chem. Chem. Phys. Fears 18 20 13927 2016 10.1039/C6CP00978F Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry 

  50. Nanoscale Breitung 8 29 14048 2016 10.1039/C6NR03575B In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries 

  51. Nano Lett. Peled 15 6 3907 2015 10.1021/acs.nanolett.5b00744 Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries 

  52. ACS Nano Becker 7 10 9173 2013 10.1021/nn4037909 In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries 

  53. Acs Appl Mater Inter Becker 8 1 530 2016 10.1021/acsami.5b09544 Enhanced lithiation cycle stability of ALD-coated confined a-Si microstructures determined using in situ AFM 

  54. J. Am. Chem. Soc. Michan 138 25 7918 2016 10.1021/jacs.6b02882 Solid electrolyte interphase growth and capacity loss in silicon electrodes 

  55. Chem. Mater. Schroder 27 16 5531 2015 10.1021/acs.chemmater.5b01627 The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes 

  56. J. Phys. Chem. C Lu 118 2 896 2014 10.1021/jp4111019 Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries 

  57. Chem. Mater. Owejan 24 11 2133 2012 10.1021/cm3006887 Solid electrolyte interphase in Li-ion batteries: evolving structures measured in situ by neutron reflectometry 

  58. Sci Rep-Uk Veith 7 2017 Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive 

  59. Electrochim. Acta Benitez 140 250 2014 10.1016/j.electacta.2014.05.018 Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries 

  60. Chem. Mater. Soto 27 23 7990 2015 10.1021/acs.chemmater.5b03358 formation and growth mechanisms of solid-electrolyte lnterphase layers in rechargeable batteries 

  61. J. Phys. Chem. C Arreaga-Salas 116 16 9072 2012 10.1021/jp300787p Progression of solid electrolyte interphase formation on hydrogenated amorphous silicon anodes for lithium-ion batteries 

  62. Nano Lett. Zhang 12 4 2153 2012 10.1021/nl300570d Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy 

  63. Phys. Chem. Chem. Phys. Zheng 16 26 13229 2014 10.1039/C4CP01968G 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries 

  64. J. Electrochem. Soc. Guan 162 9 A1798 2015 10.1149/2.0521509jes Simulation and experiment on solid electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion 

  65. J. Electrochem. Soc. Benitez 164 11 E3159 2017 10.1149/2.0181711jes Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries 

  66. J. Solid State Electrochem. Trill 15 2 349 2011 10.1007/s10008-010-1260-0 NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries 

  67. Curr Opin Chem Eng Soto 13 179 2016 10.1016/j.coche.2016.08.017 Modeling solid-electrolyte interfacial phenomena in silicon anodes 

  68. Acs Appl Mater Inter Yildirim 7 34 18985 2015 10.1021/acsami.5b02904 First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF 

  69. J. Phys. Chem. C Schroder 116 37 19737 2012 10.1021/jp307372m Examining solid electrolyte interphase formation on crystalline silicon electrodes: influence of electrochemical preparation and ambient exposure conditions 

  70. J. Am. Chem. Soc. Jin 139 42 14992 2017 10.1021/jacs.7b06834 Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate 

  71. Ind Eng Chem Proc Dd Boryta 10 4 489 1971 10.1021/i260040a011 Factors influencing rate of carbon dioxide reaction with lithium hydroxide 

  72. J. Electrochem. Soc. Aurbach 134 7 1611 1987 10.1149/1.2100722 Identification of surface-films formed on lithium in propylene carbonate solutions 

  73. J. Phys. Chem. B Zhuang 109 37 17567 2005 10.1021/jp052474w Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 m LiPF6/EC : EMC electrolyte 

  74. Chem. Mater. Michan 28 1 385 2016 10.1021/acs.chemmater.5b04408 Voltage dependent solid electrolyte lnterphase formation in silicon electrodes: monitoring The formation of organic decomposition products 

  75. J. Phys. Chem. C Leung 120 12 6302 2016 10.1021/acs.jpcc.5b11719 Stability of solid electrolyte interphase components on lithium metal and reactive anode material surfaces 

  76. J. Electrochem. Soc. Dalavi 159 5 A642 2012 10.1149/2.076205jes Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes 

  77. J. Electrochem. Soc. Nakai 158 7 A798 2011 10.1149/1.3589300 Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes 

  78. Electrochem Solid St Song 12 2 A23 2009 10.1149/1.3028216 Silane-Derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries 

  79. J. Power Sources Choi 161 2 1254 2006 10.1016/j.jpowsour.2006.05.049 Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode 

  80. Electrochem Solid St Chen 9 11 A512 2006 10.1149/1.2338771 Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive 

  81. Electrochim. Acta Abe 49 26 4613 2004 10.1016/j.electacta.2004.05.016 Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries 

  82. J. Electrochem. Soc. Tasaki 153 12 A2192 2006 10.1149/1.2354460 Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes 

  83. J. Power Sources Zhang 162 2 1379 2006 10.1016/j.jpowsour.2006.07.074 A review on electrolyte additives for lithium-ion batteries 

  84. Chem. Rev. Xu 114 23 11503 2014 10.1021/cr500003w Electrolytes and interphases in Li-ion batteries and beyond 

  85. J. Electrochem. Soc. Peled 126 12 2047 1979 10.1149/1.2128859 The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - the solid electrolyte interphase model 

  86. J. Phys. Chem. B Xu 110 15 7708 2006 10.1021/jp0601522 Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-lon batteries 

  87. Electrochim. Acta Aurbach 45 1-2 67 1999 10.1016/S0013-4686(99)00194-2 On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries 

  88. Abstr. Pap. Am. Chem. Soc. Zhang 250 2015 Role of 1, 3-propane sultone and vinylene carbonate in solid electrolyte interface (SEI) formation and gas generation 

  89. J. Phys. Chem. C Nie 117 3 1257 2013 10.1021/jp3118055 Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy 

  90. J. Electroanal. Chem. Aurbach 339 1-2 451 1992 10.1016/0022-0728(92)80467-I The behavior of lithium electrodes in propylene and ethylene carbonate - the major factors that influence Li cycling efficiency 

  91. Ecs Electrochem Lett Seo 3 9 A91 2014 10.1149/2.0021409eel Reduction reactions of carbonate solvents for lithium ion batteries 

  92. Electrochem Solid St Zhuang 9 2 A64 2006 10.1149/1.2142157 Lithium methyl carbonate as a reaction product of metallic lithium and dimethyl carbonate 

  93. Electrochem Solid St Zhuang 6 7 A136 2003 10.1149/1.1575594 Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared Spectroscopy 

  94. J. Phys. Chem. C Shkrob 117 38 19255 2013 10.1021/jp406274e Reduction of carbonate electrolytes and The formation of solid-electrolyte interface (SEI) in lithium-ion batteries. 1. Spectroscopic observations of radical intermediates generated in one-electron reduction of carbonates 

  95. Chem. Mater. Michan 28 22 8149 2016 10.1021/acs.chemmater.6b02282 Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation 

  96. J. Phys. Chem. Lett. Liu 7 23 4841 2016 10.1021/acs.jpclett.6b02267 Mechanistic insights into the challenges of cycling a nonaqueous Na-O-2 battery 

  97. Anal. Chem. Gireaud 78 11 3688 2006 10.1021/ac051987w Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries 

  98. J. Electrochem. Soc. Aurbach 142 9 2882 1995 10.1149/1.2048659 The study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable Li batteries .2. Graphite-electrodes 

  99. ECS Transactions Wang 41 41 29 2012 10.1149/1.4717960 Fluoroethylene carbonate as an electrolyte additive for improving the performance of mesocarbon microbead electrode 

  100. J. Power Sources Bordes 257 163 2014 10.1016/j.jpowsour.2013.12.144 The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes 

  101. Abstr. Pap. Am. Chem. Soc. Leung 247 2014 Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries 

  102. J. Electrochem. Soc. Ma 161 8 E3097 2014 10.1149/2.014408jes DFT study of reduction mechanisms of ethylene carbonate and fluoroethylene carbonate on Li+-Adsorbed Si clusters 

  103. Adv Mater Interfaces Sina 3 20 2016 10.1002/admi.201600438 Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance 

  104. Chemsuschem Chen 7 2 549 2014 10.1002/cssc.201300770 Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode 

  105. J. Electrochem. Soc. Vogl 162 12 A2281 2015 10.1149/2.0361512jes The mechanism of SEI formation on single crystal Si(100), Si(110) and Si(111) electrodes 

  106. J. Electrochem. Soc. Vogl 162 4 A603 2015 10.1149/2.0391504jes The mechanism of SEI formation on a single crystal Si(100) electrode 

  107. Acs Appl Mater Inter Young 7 36 20004 2015 10.1021/acsami.5b04845 Hard X-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries 

  108. Electrochim. Acta Thiam 240 307 2017 10.1016/j.electacta.2017.04.046 Optimizing ionic conduction of poly(oxyethylene) electrolytes through controlling the cross-link density 

  109. J. Power Sources Watanabe 81 786 1999 10.1016/S0378-7753(99)00250-5 High ionic conductivity and electrode interface properties of polymer electrolytes based on high molecular weight branched polyether 

  110. J. Electrochem. Soc. Elazari 159 9 A1440 2012 10.1149/2.029209jes Li ion cells comprising lithiated columnar silicon film anodes, TiS2 cathodes and fluoroethyene carbonate (FEC) as a critically important component 

  111. J. Power Sources Profatilova 222 140 2013 10.1016/j.jpowsour.2012.08.066 Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate 

  112. J. Power Sources Klavetter 238 123 2013 10.1016/j.jpowsour.2013.02.091 A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life 

  113. Energy Environ. Sci. Gauthier 6 7 2145 2013 10.1039/c3ee41318g A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries 

  114. J. Electrochem. Soc. McArthur 159 3 A198 2012 10.1149/2.004203jes In situ investigations of SEI layer growth on electrode materials for lithium-ion batteries using spectroscopic ellipsometry 

  115. J. Phys. Chem. C Shkrob 117 38 19270 2013 10.1021/jp406273p Reduction of carbonate electrolytes and The formation of solid-electrolyte interface (SEI) in lithium-ion batteries. 2. Radiolytically induced polymerization of ethylene carbonate 

  116. J. Phys. Chem. C Shkrob 119 27 14954 2015 10.1021/acs.jpcc.5b03591 What makes fluoroethylene carbonate different? 

  117. J. Am. Chem. Soc. Wayland 116 17 7943 1994 10.1021/ja00096a080 Living radical polymerization of acrylates by organocobalt porphyrin complexes 

  118. J. Power Sources Chalasani 208 67 2012 10.1016/j.jpowsour.2012.02.004 Methylene ethylene carbonate: novel additive to improve the high temperature performance of lithium ion batteries 

  119. Int J Electrochem Sc Xu 8 6 8058 2013 10.1016/S1452-3981(23)12869-0 New insight into vinylethylene carbonate as a film forming additive to ethylene carbonate-based electrolytes for lithium-ion batteries 

  120. Chemsuschem Chen 7 2 549 2014 10.1002/cssc.201300770 Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode 

  121. J. Electrochem. Soc. Markevich 160 10 A1824 2013 10.1149/2.085310jes Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: dominant factors governing cycling performance 

  122. J. Electrochem. Soc. Spahr 151 9 A1383 2004 10.1149/1.1775224 Exfoliation of graphite during electrochemical lithium insertion in ethylene carbonate-containing electrolytes 

  123. J. Power Sources Mogi 119 597 2003 10.1016/S0378-7753(03)00302-1 Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy 

  124. J. Power Sources Chen 174 2 538 2007 10.1016/j.jpowsour.2007.06.149 Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries 

  125. Bahadur 2005 Principles of Polymer Science 

  126. P Natl Acad Sci USA Vlad 109 38 15168 2012 10.1073/pnas.1208638109 Roll up nanowire battery from silicon chips 

  127. J. Electrochem. Soc. Uchida 162 3 A406 2015 10.1149/2.0581503jes Effect of electrolyte additives on non-nano-Si negative electrodes prepared with polyimide binder 

  128. J. Electrochem. Soc. Ota 151 10 A1659 2004 10.1149/1.1785795 Analysis of vinylene carbonate derived SEI layers on graphite anode 

  129. J. Electrochem. Soc. El Ouatani 156 2 A103 2009 10.1149/1.3029674 The effect of vinylene carbonate additive on surface film formation on both electrodes in Li-ion batteries 

  130. J. Electrochem. Soc. Leifer 158 5 A471 2011 10.1149/1.3559551 C-13 solid state NMR suggests unusual breakdown products in SEI formation on lithium ion electrodes 

  131. Microscopy-Jpn Tsuda 64 3 159 2015 10.1093/jmicro/dfv003 In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery 

  132. J. Power Sources Sugimoto 195 18 6153 2010 10.1016/j.jpowsour.2010.01.011 Application of bis(fluorosulfonyl)imide-based ionic liquid electrolyte to silicon-nickel-carbon composite anode for lithium-ion batteries 

  133. Electrochem. Commun. Baranchugov 9 4 796 2007 10.1016/j.elecom.2006.11.014 Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes 

  134. Nat. Commun. Piper 6 2015 10.1038/ncomms7230 Stable silicon-ionic liquid interface for next-generation lithium-ion batteries 

  135. J. Power Sources Men 401 354 2018 10.1016/j.jpowsour.2018.09.009 Fluorine-substituted ionic liquid for Si anode in Li-ion battery 

  136. J. Power Sources Usui 196 8 3911 2011 10.1016/j.jpowsour.2010.12.027 Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery 

  137. Electrochem. Commun. Nguyen 12 11 1593 2010 10.1016/j.elecom.2010.09.003 Characterization of SEI layer formed on high performance Si-Cu anode in ionic liquid battery electrolyte 

  138. Electrochim. Acta Choi 56 27 9818 2011 10.1016/j.electacta.2011.08.080 Electrochemical and interfacial behavior of a FeSi2.7 thin film electrode in an ionic liquid electrolyte 

  139. J. Appl. Electrochem. Ivanov 44 1 159 2014 10.1007/s10800-013-0619-1 Electrochemical performance of nanoporous Si as anode for lithium ion batteries in alkyl carbonate and ionic liquid-based electrolytes 

  140. Electrochim. Acta Markevich 55 8 2687 2010 10.1016/j.electacta.2009.12.030 In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes 

  141. J. Phys. Chem. C Budi 116 37 19789 2012 10.1021/jp304581g Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide 

  142. Russ. J. Electrochem. Bushkova 53 7 677 2017 10.1134/S1023193517070035 New lithium salts in electrolytes for lithium-ion batteries (review) 

  143. Solid State Ion. Marcinek 276 107 2015 10.1016/j.ssi.2015.02.006 Electrolytes for Li-ion transport - review 

  144. Electrochim. Acta Aurbach 50 2-3 247 2004 10.1016/j.electacta.2004.01.090 Design of electrolyte solutions for Li and Li-ion batteries: a review 

  145. Chem. Eur J. Aravindan 17 51 14326 2011 10.1002/chem.201101486 Lithium-ion conducting electrolyte salts for lithium batteries 

  146. J. Power Sources Gnanaraj 119 794 2003 10.1016/S0378-7753(03)00255-6 The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions 

  147. J. Electrochem. Soc. Aurbach 143 12 3809 1996 10.1149/1.1837300 A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures 

  148. Energy Environ. Sci. Younesi 8 7 1905 2015 10.1039/C5EE01215E Lithium salts for advanced lithium batteries: Li-metal, Li-O-2, and Li-S 

  149. J. Power Sources Krause 68 2 320 1997 10.1016/S0378-7753(97)02517-2 Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells 

  150. Electrochem. Commun. Di Censo 7 10 1000 2005 10.1016/j.elecom.2005.07.005 Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries 

  151. J. Power Sources Zugmann 196 3 1417 2011 10.1016/j.jpowsour.2010.08.023 Electrochemical characterizaiton of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate 

  152. J. Electrochem. Soc. Nie 161 6 A1001 2014 10.1149/2.054406jes Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries 

  153. J. Power Sources Abraham 180 1 612 2008 10.1016/j.jpowsour.2008.02.047 Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells 

  154. J. Power Sources Sloop 119 330 2003 10.1016/S0378-7753(03)00149-6 The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge 

  155. J. Power Sources Ravdel 119 805 2003 10.1016/S0378-7753(03)00257-X Thermal stability of lithium-ion battery electrolytes 

  156. J. Power Sources Bushkova 157 1 477 2006 10.1016/j.jpowsour.2005.07.078 Chemical interactions in the cathode half-cell of lithium-ion batteries - Part I. Thermodynamic simulation 

  157. Electrochem Solid St Jiang 6 9 A180 2003 10.1149/1.1592911 Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC 

  158. Russ. J. Electrochem. Zheng 50 9 904 2014 10.1134/S1023193514090122 Effects of water contamination on the electrical properties of 18650 lithium-ion batteries 

  159. Electrochem. Commun. Lux 14 1 47 2012 10.1016/j.elecom.2011.10.026 The mechanism of HF formation in LiPF6 based organic carbonate electrolytes 

  160. J. Electrochem. Soc. Judge 118 11 1772 1971 10.1149/1.2407835 Study of dissolution of Sio2 in acidic fluoride solutions 

  161. J. Mater. Sci. Spierings 28 23 6261 1993 10.1007/BF01352182 Wet chemical etching of silicate-glasses in hydrofluoric-acid based solutions 

  162. J. Am. Ceram. Soc. Liang 70 8 570 1987 10.1111/j.1151-2916.1987.tb05708.x Dissolution kinetics of crystalline and amorphous silica in hydrofluoric-hydrochloric acid mixtures 

  163. J. Electrochem. Soc. Kikuyama 141 2 366 1994 10.1149/1.2054733 A study of the dissociation state and the Sio2 etching reaction for Hf solutions of extremely low concentration 

  164. J. Chem. Phys. Hoshino 111 5 2109 1999 10.1063/1.479480 Etching process of SiO2 by HF molecules 

  165. Geochem. Cosmochim. Acta Mitra 73 23 7045 2009 10.1016/j.gca.2009.08.027 Solubility and dissolution rate of silica in acid fluoride solutions 

  166. Chem. Mater. Shin 30 10 3233 2018 10.1021/acs.chemmater.8b00145 Agglomeration mechanism and a protective role of Al2O3 for prolonged cycle life of Si anode in lithium-ion batteries 

  167. J. Phys. Chem. C Delpuech 118 31 17318 2014 10.1021/jp503949y Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies 

  168. Nanoscale Jeena 8 17 9245 2016 10.1039/C6NR01559J A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries 

  169. J. Power Sources Arai 193 2 851 2009 10.1016/j.jpowsour.2009.04.001 A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries 

  170. J. Am. Chem. Soc. Philippe 135 26 9829 2013 10.1021/ja403082s Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study 

  171. J. Electrochem. Soc. Tasaki 156 12 A1019 2009 10.1149/1.3239850 Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents 

  172. J. Power Sources Han 196 7 3623 2011 10.1016/j.jpowsour.2010.12.040 Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties 

  173. J. Electrochem. Soc. Li 158 2 A74 2011 10.1149/1.3514705 Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents 

  174. J. Power Sources Allen 237 104 2013 10.1016/j.jpowsour.2013.02.086 N-Alkyl-N-methylpyrrolidinium difluoro(oxalato)borate ionic liquids: physical/electrochemical properties and Al corrosion 

  175. Energy Environ. Sci. Jurng 11 9 2600 2018 10.1039/C8EE00364E Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes 

  176. Nano Lett. Zhang 16 3 2011 2016 10.1021/acs.nanolett.5b05283 Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries 

  177. J. Power Sources Lindgren 301 105 2016 10.1016/j.jpowsour.2015.09.112 A hard X-ray photoelectron spectroscopy study on the solid electrolyte interphase of a lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide based electrolyte for Si-electrodes 

  178. J. Power Sources Choi 172 1 404 2007 10.1016/j.jpowsour.2007.07.058 Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte 

  179. J. Electrochem. Soc. Dunn 161 1 A176 2014 10.1149/2.086401jes Flame retardant Co-solvent incorporation into lithium-ion coin cells with thin-film Si anodes 

  180. J. Electrochem. Soc. Li 156 4 A294 2009 10.1149/1.3076196 Electrochemical performance of Si/Graphite/Carbon composite electrode in mixed electrolytes containing LiBOB and LiPF6 

  181. Electrochim. Acta Li 54 19 4506 2009 10.1016/j.electacta.2009.03.046 Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries 

  182. J. Phys. Chem. C Pollak 111 30 11437 2007 10.1021/jp0729563 In situ conductivity, impedance spectroscopy, and ex situ Raman spectra of amorphous silicon during the Insertion/Extraction of lithium 

  183. J. Electrochem. Soc. Wang 153 12 A2188 2006 10.1149/1.2354458 Comparison of the reactions between LixSi or Li0.81C6 and nonaqueous solvent or electrolytes at elevated temperature 

  184. Electrochim. Acta Lee 137 1 2014 10.1016/j.electacta.2014.05.136 A bi-functional lithium difluoro(oxalato)borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures 

  185. J. Nanosci. Nanotechnol. Jang 16 5 4792 2016 10.1166/jnn.2016.12229 Synthesis and application of Si/carbon nanofiber composites based on Ni and Mo catalysts for anode material of lithium secondary batteries 

  186. J. Electrochem. Soc. Marom 157 8 A972 2010 10.1149/1.3447750 Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries 

  187. Electrochem. Commun. Chen 5 11 919 2003 10.1016/j.elecom.2003.08.017 Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers 

  188. J. Electrochem. Soc. Chen 150 8 A1073 2003 10.1149/1.1586922 Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries 

  189. Electrochem Solid St Li 10 2 A17 2007 10.1149/1.2398725 Sodium carboxymethyl cellulose - a potential binder for Si negative electrodes for Li-ion batteries 

  190. J Electrochem Sci Te Choi 6 2 35 2015 10.33961/JECST.2015.6.2.35 Recent progress on polymeric binders for silicon anodes in lithium-ion batteries 

  191. Electrochem Solid St Liu 8 2 A100 2005 10.1149/1.1847685 Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder 

  192. J. Power Sources Munao 196 16 6695 2011 10.1016/j.jpowsour.2010.11.072 Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries 

  193. Electrochem Solid St Mazouzi 12 11 A215 2009 10.1149/1.3212894 Silicon composite electrode with high capacity and long cycle life 

  194. Nature Cordier 451 7181 977 2008 10.1038/nature06669 Self-healing and thermoreversible rubber from supramolecular assembly 

  195. Electrochem. Commun. Park 13 10 1051 2011 10.1016/j.elecom.2011.06.034 Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries 

  196. Nat. Chem. Wang 5 12 1042 2013 10.1038/nchem.1802 Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries 

  197. J. Power Sources Haregewoin 376 152 2018 10.1016/j.jpowsour.2017.11.060 The electrochemical behavior of poly 1-pyrenemethyl methacrylate binder and its effect on the interfacial chemistry of a silicon electrode 

  198. J. Electrochem. Soc. Ling 164 4 A545 2017 10.1149/2.0011704jes Investigating the doping mechanism of pyrene based methacrylate functional conductive binder in silicon anodes for lithium-ion batteries 

  199. J. Am. Chem. Soc. Park 137 7 2565 2015 10.1021/ja511181p Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries 

  200. J. Am. Chem. Soc. Wu 135 32 12048 2013 10.1021/ja4054465 Toward an ideal polymer binder design for high-capacity battery anodes 

  201. Chem. Soc. Rev. Kwon 47 6 2145 2018 10.1039/C7CS00858A The emerging era of supramolecular polymeric binders in silicon anodes 

  202. J. Alloy. Comp. He 763 228 2018 10.1016/j.jallcom.2018.05.286 Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode 

  203. Electrochim. Acta Karkar 258 453 2017 10.1016/j.electacta.2017.11.082 A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes 

  204. Science Kovalenko 334 6052 75 2011 10.1126/science.1209150 A major constituent of Brown algae for use in high-capacity Li-ion batteries 

  205. J. Power Sources Yue 247 327 2014 10.1016/j.jpowsour.2013.08.073 Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries 

  206. J. Phys. Chem. C Komaba 115 27 13487 2011 10.1021/jp201691g Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries 

  207. Angew. Chem. Int. Ed. Koo 51 35 8762 2012 10.1002/anie.201201568 A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries 

  208. Macromolecules Dong 30 4 1111 1997 10.1021/ma960693x Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid) 

  209. Acs Appl Mater Inter Nguyen 8 19 12211 2016 10.1021/acsami.6b03357 Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation 

  210. Appl. Surf. Sci. Lee 447 442 2018 10.1016/j.apsusc.2018.04.004 Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode 

  211. Langmuir Nguyen 33 37 9254 2017 10.1021/acs.langmuir.6b04310 Improved cycling performance of a Si nanoparticle anode utilizing citric acid as a surface-modifying agent 

  212. Front. Mater. Sci. Luo 12 2 147 2018 10.1007/s11706-018-0416-1 High performance sandwich structured Si thin film anodes with LiPON coating 

  213. Nanoscale Jimenez 10 4 2128 2018 10.1039/C7NR06568J A step towards understanding the beneficial influence of a LIPON-based artificial SEI on silicon thin film anodes in lithium-ion batteries 

  214. Chemistry Chen 3 2 729 2018 Optimizing the lithium phosphorus oxynitride protective layer thickness on low-grade composite Si-based anodes for lithium-ion batteries 

  215. Acs Appl Mater Inter Li 6 13 10083 2014 10.1021/am5009419 Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes 

  216. Acs Appl Mater Inter Jin 9 18 15388 2017 10.1021/acsami.7b00366 Scalable production of the silicon-tin yin-yang hybrid structure with graphene coating for high performance lithium-ion battery anodes 

  217. Acs Appl Mater Inter Chang 9 37 31879 2017 10.1021/acsami.7b09169 Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries 

  218. Electrochim. Acta Du 254 123 2017 10.1016/j.electacta.2017.09.087 Si alloy/graphite coating design as anode for Li-ion batteries with high volumetric energy density 

  219. J. Power Sources Chen 342 467 2017 10.1016/j.jpowsour.2016.12.089 Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries 

  220. Adv. Mater. Chen 29 21 2017 10.1002/adma.201605650 Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries 

  221. Energy Technol-Ger Chen 5 8 1415 2017 10.1002/ente.201600712 Carbon-assisted technique to modify the surface of recycled silicon/silicon carbide composite for lithium-ion batteries 

  222. J. Alloy. Comp. Li 688 1072 2016 10.1016/j.jallcom.2016.07.148 Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries 

  223. ACS Nano Lu 9 3 2540 2015 10.1021/nn505410q Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes 

  224. ACS Nano Liu 9 2 1985 2015 10.1021/nn507003z Mechanically and chemically robust sandwich-structured C@Si@C nanotube Array Li-ion battery anodes 

  225. J. Power Sources Klankowski 276 73 2015 10.1016/j.jpowsour.2014.11.094 Anomalous capacity increase at high-rates in lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers 

  226. Acs Appl Mater Inter He 5 21 11152 2013 10.1021/am4033668 Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries 

  227. Angew. Chem. Int. Ed. Ng 45 41 6896 2006 10.1002/anie.200601676 Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries 

  228. Angew. Chem. Int. Ed. Hu 47 9 1645 2008 10.1002/anie.200704287 Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries 

  229. Nat. Nanotechnol. Liu 9 3 187 2014 10.1038/nnano.2014.6 A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes 

  230. Electrochim. Acta Han 156 11 2015 10.1016/j.electacta.2015.01.051 A peanut shell inspired scalable synthesis of three-dimensional carbon coated porous silicon particles as an anode for lithium-ion batteries 

  231. J. Mater. Chem. Han 4 45 17757 2016 10.1039/C6TA07274G Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode 

  232. Energy Storage Materials Liu 13 112 2018 10.1016/j.ensm.2018.01.004 Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries 

  233. Chem. Soc. Rev. Liu 48 1 285 2019 10.1039/C8CS00441B Silicon oxides: a promising family of anode materials for lithium-ion batteries 

  234. Phys. Chem. Chem. Phys. Chen 14 37 12741 2012 10.1039/c2cp42231j Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries 

  235. Acs Sustain Chem Eng Luo 7 12 10415 2019 10.1021/acssuschemeng.9b00616 Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries 

  236. Chem. Eng. J. Mi 351 103 2018 10.1016/j.cej.2018.06.065 A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries 

  237. J. Alloy. Comp. Yang 758 177 2018 10.1016/j.jallcom.2018.05.101 A unique intricate hollow Si nanocomposite designed for lithium storage 

  238. Acs Appl Mater Inter Guo 9 48 42084 2017 10.1021/acsami.7b13035 Tunable synthesis of yolk-shell porous Silicon@Carbon for optimizing Si/C-based anode of lithium-ion batteries 

  239. J. Alloy. Comp. Ma 704 599 2017 10.1016/j.jallcom.2017.02.083 Facile synthesis of Si-C nanocomposites with yolk-shell structure as an anode for lithium-ion batteries 

  240. Electrochim. Acta Yang 295 75 2019 10.1016/j.electacta.2018.10.142 Preparation of Si-based composite encapsulated by an incomplete multifunction-coating for lithium storage 

  241. Energy Storage Materials Liu 19 299 2019 10.1016/j.ensm.2018.10.011 Yolk@Shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage 

  242. Nanoscale Kim 11 28 13650 2019 10.1039/C9NR04074A Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency 

  243. Sci. Bull. Kong 64 4 261 2019 10.1016/j.scib.2019.01.015 Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries 

  244. Batteries Abe 4 4 71 2018 10.3390/batteries4040071 Effect of prelithiation process for hard carbon negative electrode on the rate and cycling behaviors of lithium-ion batteries 

  245. Mater. Lett. Yang 184 65 2016 10.1016/j.matlet.2016.08.006 Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries 

  246. Nanoscale Haruta 10 36 17257 2018 10.1039/C8NR05354E Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using in situ AFM 

  247. J. Power Sources Hubaud 282 639 2015 10.1016/j.jpowsour.2015.02.006 Interfacial study of the role of SiO2 on Si anodes using electrochemical quartz crystal microbalance 

  248. Chem. Eur J. Yang 23 9 2165 2017 10.1002/chem.201604918 Double core-shell Si@C@SiO2 for anode material of lithium-ion batteries with excellent cycling stability 

  249. Bull. Korean Chem. Soc. Min 34 4 1296 2013 10.5012/bkcs.2013.34.4.1296 Self-organized artificial SEI for improving the cycling ability of silicon-based battery anode materials 

  250. Acs Appl Mater Inter Hy 7 25 13801 2015 10.1021/acsami.5b01853 Stabilizing nanosized Si anodes with the synergetic usage of atomic layer deposition and electrolyte additives for Li-ion batteries 

  251. J. Phys. Chem. Lett. Li 4 20 3387 2013 10.1021/jz4018255 Atomic layered coating enabling ultrafast surface kinetics at silicon electrodes in lithium ion batteries 

  252. J. Mater. Chem. Nguyen 22 47 24618 2012 10.1039/c2jm35125k Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes 

  253. Electrochim. Acta John 235 191 2017 10.1016/j.electacta.2017.03.127 Conformal coating of TiO2 shell on silicon nanoparticles for improved electrochemical performance in Li-ion battery applications 

  254. ACS Nano Luo 10 11 10524 2016 10.1021/acsnano.6b06517 Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage 

  255. Chem. Eng. J. Yi 347 214 2018 10.1016/j.cej.2018.04.101 TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage 

  256. J. Mater. Chem. Lotfabad 2 8 2504 2014 10.1039/C3TA14302C Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes 

  257. J. Mater. Chem. Kohandehghan 1 41 12850 2013 10.1039/c3ta12964k Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance 

  258. Nano Energy Piper 22 202 2016 10.1016/j.nanoen.2016.02.021 Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes 

  259. Adv. Mater. Piper 26 10 1596 2014 10.1002/adma.201304714 Reversible high-capacity Si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition 

  260. J. Mater. Chem. Xue 3 38 19218 2015 10.1039/C5TA03471J Poly(ethylene oxide)-based electrolytes for lithium-ion batteries 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로