$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries

Energy storage materials, v.25, 2020년, pp.62 - 69  

Do, Joongyeop ,  Kim, Inkyung ,  Kim, Heejin ,  Jung, Yousung

초록이 없습니다.

참고문헌 (72)

  1. Advanced Energy Materials You 8 1701785 2017 10.1002/aenm.201701785 Progress in high-voltage cathode materials for rechargeable sodium-ion batteries 

  2. Advanced Energy Materials Chen 9 1803609 2019 10.1002/aenm.201803609 High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies 

  3. Energy Environ. Sci. Palomares 6 2312 2013 10.1039/c3ee41031e Update on Na-based battery materials. A growing research path 

  4. Adv. Funct. Mater. Slater 23 947 2013 10.1002/adfm.201200691 Sodium-ion batteries 

  5. Energy Environ. Sci. Ong 4 3680 2011 10.1039/c1ee01782a Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials 

  6. Advanced Energy Materials Delmas 8 1703137 2018 10.1002/aenm.201703137 Sodium and sodium-ion batteries: 50 years of research 

  7. Small Liu 2019 Recent progress of layered transition metal oxide cathodes for sodium-ion batteries 

  8. Advanced Energy Materials Wang 8 1701912 2018 10.1002/aenm.201701912 Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance 

  9. J. Mater. Chem. Wang 7 10138 2019 10.1039/C8TA12441H Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: status, challenges and countermeasures 

  10. Advanced Energy Materials Ding 8 1800221 2018 10.1002/aenm.201800221 KVOPO4: A new high capacity multielectron Na-ion battery cathode 

  11. Nat. Commun. Mortemard De Boisse 7 11397 2016 10.1038/ncomms11397 Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode 

  12. Chem. Mater. Perez 28 8278 2016 10.1021/acs.chemmater.6b03338 Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3 

  13. J. Mater. Chem. Assadi 6 24120 2018 10.1039/C8TA05961F High-performance Na ion cathodes based on the ubiquitous and reversible O redox reaction 

  14. J. Electrochem. Soc. Assadi 166 A5343 2019 10.1149/2.0521903jes Oxygen redox promoted by Na excess and covalency in hexagonal and monoclinic Na2-xRuO3 polymorphs 

  15. Advanced Energy Materials Bai 8 1802379 2018 10.1002/aenm.201802379 Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1?yZnyO2 (0 < y < 0.23) 

  16. Joule Dai 3 518 2019 10.1016/j.joule.2018.11.014 High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions 

  17. Nat. Chem. Maitra 10 288 2018 10.1038/nchem.2923 Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2 

  18. Advanced Energy Materials Mortemard de Boisse 8 1800409 2018 10.1002/aenm.201800409 Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn vacancy) 

  19. Chem. Mater. Pearce 30 3285 2018 10.1021/acs.chemmater.8b00320 A tridimensional Na-ion insertion material with a redox active oxygen network 

  20. J. Mater. Chem. Assadi 6 3747 2018 10.1039/C7TA10826E Oxygen redox in hexagonal layered NaxTMO3 (TM = 4d elements) for high capacity Na ion batteries 

  21. Nat. Mater. Sathiya 12 827 2013 10.1038/nmat3699 Reversible anionic redox chemistry in high-capacity layered-oxide electrodes 

  22. Energy Environ. Sci. Saubanere 9 984 2016 10.1039/C5EE03048J The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries 

  23. Energy Environ. Sci. Hy 9 1931 2016 10.1039/C5EE03573B Performance and design considerations for the lithium excess layered pxide positive electrode materials for lithium ion batteries 

  24. Nat. Chem. Seo 1 2016 Redox activity in layered and cation-disordered Li-excess cathode materials 

  25. Energy Environ. Sci. Kim 3 14 2017 Material design of high-capacity Li-rich layered-oxide electrodes: Li2MnO3 and beyond 

  26. Energy Environ. Sci. Xie 266 2017 10.1039/C6EE02328B Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries 

  27. Nat. Mater. Pearce 16 580 2017 10.1038/nmat4864 Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3 

  28. Nat. Mater. Hong 18 256 2019 10.1038/s41563-018-0276-1 Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides 

  29. Nat. Mater. Ben Yahia 18 496 2019 10.1038/s41563-019-0318-3 Unified picture of anionic redox in Li/Na-ion batteries 

  30. Nat. Commun. Assat 8 2219 2017 10.1038/s41467-017-02291-9 Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes 

  31. J. Am. Chem. Soc. Chen 141 10751 2019 10.1021/jacs.9b03710 Unraveling oxygen evolution in Li-rich oxides: A unified modeling of the intermediate peroxo/superoxo-like dimers 

  32. Nat. Commun. Gent 8 2091 2017 10.1038/s41467-017-02041-x Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides 

  33. Nat. Mater. Sathiya 14 230 2015 10.1038/nmat4137 Origin of voltage decay in high-capacity layered oxide electrodes 

  34. Nat. Commun. Yabuuchi 7 1 2016 10.1038/ncomms13814 Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries 

  35. Electrochem. Commun. Rozier 53 29 2015 10.1016/j.elecom.2015.02.001 Anionic redox chemistry in Na-rich Na2Ru1-ySnyO3 positive electrode material for Na-ion batteries 

  36. ACS Sustain. Chem. Eng. Song 5 4785 2017 10.1021/acssuschemeng.7b00196 Y-doped Na2ZrO3: A Na-rich layered oxide as high-capacity cathode material for sodium-ion batteries 

  37. J. Am. Chem. Soc. Hanna 118 5772 1996 10.1021/ja960016i Multiple quantum magic angle spinning NMR detection of impurity phases in Na2HfO3 

  38. Apl. Mater. Jain 1 2013 10.1063/1.4812323 Commentary: the materials project: A materials genome approach to accelerating materials innovation 

  39. Bull. Soc. Chim. Fr. J 244 1966 Sur quelques nouvelles phases oxygenees ternaires de formule Na4MO4 et Na2MO3 

  40. Zeitschrift fur Anorganische und Allgemeine Chemie Mogare 630 547 2004 10.1002/zaac.200400012 Syntheses and crystal structures of two sodium ruthenates: Na2RuO4 and Na2RuO3 

  41. J. Solid State Chem. Panin 180 1566 2007 10.1016/j.jssc.2007.03.005 Synthesis and crystal structure of the palladium oxides NaPd3O4, Na2PdO3 and K3Pd2O4 

  42. Inorg. Chem. Smaha 54 7985 2015 10.1021/acs.inorgchem.5b01186 Tuning sodium ion conductivity in the layered honeycomb oxide Na3-xSn2-xSbxNaO6 

  43. Phys. Rev. Lett. Choi 108 127204 2012 10.1103/PhysRevLett.108.127204 Spin waves and revised crystal structure of honeycomb iridate Na2IrO3 

  44. Zeitschrift fur Anorganische und Allgemeine Chemie Urland 392 23 1972 10.1002/zaac.19723920104 Zur kenntnis der oxoplatinate Na2PtO2, Na2PtO3, (K2PtO3) und (Rb2PO3) 

  45. Acta Crystallogr. B Cruickshank 34 1333 1978 10.1107/S0567740878005488 A reinvestigation of sodium metagermanate 

  46. Zeitschrift fur Anorganische und Allgemeine Chemie Sobotka 630 2377 2004 10.1002/zaac.200400314 Synthesis, crystal structures and properties of Na2ReO3 and of a second modification of Na5ReO6 

  47. J. Power Sources Song 342 685 2017 10.1016/j.jpowsour.2016.12.116 Na-rich layered Na2Ru0.95Zr0.05O3 cathode material for Na-ion batteries 

  48. Electrochem. Solid State Lett. Reed 4 A78 2001 10.1149/1.1368896 Layered-to-spinel phase transition in LixMnO2 

  49. J. Phys. Chem. Solids Shirane 10 35 1959 10.1016/0022-3697(59)90122-2 Neutron-diffraction study of antiferromagnetic FeTiO3 and its solid solutions with α-Fe2O3 

  50. Am. Mineral. Post 73 1401 1988 Chalcophanite, ZnMn3O7 3H2O: New crystal-structure determinations 

  51. Energy Environ. Sci. Nam 12 1999 2019 10.1039/C9EE00718K Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries 

  52. Science Owen 344 1451 2014 10.1126/science.1255819 Phase-transforming electrodes 

  53. Proc. Natl. Acad. Sci. U.S.A. Lim 111 599 2014 10.1073/pnas.1316557110 Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery 

  54. J. Chem. Phys. Heyd 118 8207 2003 10.1063/1.1564060 Erratum: “Hybrid functionals based on a screened Coulomb potential” 

  55. Phys. Rev. Lett. Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Generalized gradient approximation made simple 

  56. Green Energy and Environment Li 1 18 2016 10.1016/j.gee.2016.04.006 Progress in electrolytes for rechargeable Li-based batteries and beyond 

  57. npj Comput. Mater. Zhang 4 1 2018 10.1038/s41524-018-0070-2 An effective method to screen sodium-based layered materials for sodium ion batteries 

  58. Nat. Mater. Curtarolo 12 191 2013 10.1038/nmat3568 The high-throughput highway to computational materials design 

  59. Energy Environ. Sci. Thackeray 5 7854 2012 10.1039/c2ee21892e Electrical energy storage for transportation - approaching the limits of, and going beyond, lithium-ion batteries 

  60. Energy Environ. Sci. Liu 8 964 2015 10.1039/C4EE03389B Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations 

  61. Advanced Energy Materials Kirklin 3 252 2012 10.1002/aenm.201200593 High-throughput computational screening of new Li-ion battery anode materials 

  62. Nat. Mater. Wang 14 1026 2015 10.1038/nmat4369 Design principles for solid-state lithium superionic conductors 

  63. Nat. Commun. Aykol 7 13779 2016 10.1038/ncomms13779 High-throughput computational design of cathode coatings for Li-ion batteries 

  64. Phys. Rev. B Blochl 50 17953 1994 10.1103/PhysRevB.50.17953 Projector augmented-wave method 

  65. Comput. Mater. Sci. Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set 

  66. Phys. Rev. B Monkhorst 13 5188 1976 10.1103/PhysRevB.13.5188 Special points for brillouin-zone integrations 

  67. Phys. Rev. B Dudarev 57 1505 1998 10.1103/PhysRevB.57.1505 Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study 

  68. J. Chem. Phys. Grimme 132 154104 2010 10.1063/1.3382344 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu 

  69. J. Chem. Phys. Henkelman 113 9901 2000 10.1063/1.1329672 A climbing image nudged elastic band method for finding saddle points and minimum energy paths 

  70. Phys. Rev. B Wang 73 195107 2006 10.1103/PhysRevB.73.195107 Oxidation energies of transition metal oxides within the GGA+U framework 

  71. Barin 1989 Thermochemical Data of Pure Substances 

  72. Comput. Mater. Sci. Ceder 8 161 1997 10.1016/S0927-0256(97)00029-3 Application of first-principles calculations to the design of rechargeable Li-batteries 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로