최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Energy storage materials, v.25, 2020년, pp.62 - 69
Do, Joongyeop , Kim, Inkyung , Kim, Heejin , Jung, Yousung
초록이 없습니다.
Advanced Energy Materials You 8 1701785 2017 10.1002/aenm.201701785 Progress in high-voltage cathode materials for rechargeable sodium-ion batteries
Advanced Energy Materials Chen 9 1803609 2019 10.1002/aenm.201803609 High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies
Energy Environ. Sci. Palomares 6 2312 2013 10.1039/c3ee41031e Update on Na-based battery materials. A growing research path
Adv. Funct. Mater. Slater 23 947 2013 10.1002/adfm.201200691 Sodium-ion batteries
Energy Environ. Sci. Ong 4 3680 2011 10.1039/c1ee01782a Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
Advanced Energy Materials Delmas 8 1703137 2018 10.1002/aenm.201703137 Sodium and sodium-ion batteries: 50 years of research
Small Liu 2019 Recent progress of layered transition metal oxide cathodes for sodium-ion batteries
Advanced Energy Materials Wang 8 1701912 2018 10.1002/aenm.201701912 Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance
J. Mater. Chem. Wang 7 10138 2019 10.1039/C8TA12441H Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: status, challenges and countermeasures
Advanced Energy Materials Ding 8 1800221 2018 10.1002/aenm.201800221 KVOPO4: A new high capacity multielectron Na-ion battery cathode
Nat. Commun. Mortemard De Boisse 7 11397 2016 10.1038/ncomms11397 Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
Chem. Mater. Perez 28 8278 2016 10.1021/acs.chemmater.6b03338 Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3
J. Mater. Chem. Assadi 6 24120 2018 10.1039/C8TA05961F High-performance Na ion cathodes based on the ubiquitous and reversible O redox reaction
J. Electrochem. Soc. Assadi 166 A5343 2019 10.1149/2.0521903jes Oxygen redox promoted by Na excess and covalency in hexagonal and monoclinic Na2-xRuO3 polymorphs
Advanced Energy Materials Bai 8 1802379 2018 10.1002/aenm.201802379 Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1?yZnyO2 (0 < y < 0.23)
Joule Dai 3 518 2019 10.1016/j.joule.2018.11.014 High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions
Nat. Chem. Maitra 10 288 2018 10.1038/nchem.2923 Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
Advanced Energy Materials Mortemard de Boisse 8 1800409 2018 10.1002/aenm.201800409 Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn vacancy)
Chem. Mater. Pearce 30 3285 2018 10.1021/acs.chemmater.8b00320 A tridimensional Na-ion insertion material with a redox active oxygen network
J. Mater. Chem. Assadi 6 3747 2018 10.1039/C7TA10826E Oxygen redox in hexagonal layered NaxTMO3 (TM = 4d elements) for high capacity Na ion batteries
Nat. Mater. Sathiya 12 827 2013 10.1038/nmat3699 Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
Energy Environ. Sci. Saubanere 9 984 2016 10.1039/C5EE03048J The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
Energy Environ. Sci. Hy 9 1931 2016 10.1039/C5EE03573B Performance and design considerations for the lithium excess layered pxide positive electrode materials for lithium ion batteries
Nat. Chem. Seo 1 2016 Redox activity in layered and cation-disordered Li-excess cathode materials
Energy Environ. Sci. Kim 3 14 2017 Material design of high-capacity Li-rich layered-oxide electrodes: Li2MnO3 and beyond
Energy Environ. Sci. Xie 266 2017 10.1039/C6EE02328B Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries
Nat. Mater. Pearce 16 580 2017 10.1038/nmat4864 Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3
Nat. Mater. Hong 18 256 2019 10.1038/s41563-018-0276-1 Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides
Nat. Mater. Ben Yahia 18 496 2019 10.1038/s41563-019-0318-3 Unified picture of anionic redox in Li/Na-ion batteries
Nat. Commun. Assat 8 2219 2017 10.1038/s41467-017-02291-9 Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes
J. Am. Chem. Soc. Chen 141 10751 2019 10.1021/jacs.9b03710 Unraveling oxygen evolution in Li-rich oxides: A unified modeling of the intermediate peroxo/superoxo-like dimers
Nat. Commun. Gent 8 2091 2017 10.1038/s41467-017-02041-x Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
Nat. Mater. Sathiya 14 230 2015 10.1038/nmat4137 Origin of voltage decay in high-capacity layered oxide electrodes
Nat. Commun. Yabuuchi 7 1 2016 10.1038/ncomms13814 Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
Electrochem. Commun. Rozier 53 29 2015 10.1016/j.elecom.2015.02.001 Anionic redox chemistry in Na-rich Na2Ru1-ySnyO3 positive electrode material for Na-ion batteries
ACS Sustain. Chem. Eng. Song 5 4785 2017 10.1021/acssuschemeng.7b00196 Y-doped Na2ZrO3: A Na-rich layered oxide as high-capacity cathode material for sodium-ion batteries
J. Am. Chem. Soc. Hanna 118 5772 1996 10.1021/ja960016i Multiple quantum magic angle spinning NMR detection of impurity phases in Na2HfO3
Apl. Mater. Jain 1 2013 10.1063/1.4812323 Commentary: the materials project: A materials genome approach to accelerating materials innovation
Bull. Soc. Chim. Fr. J 244 1966 Sur quelques nouvelles phases oxygenees ternaires de formule Na4MO4 et Na2MO3
Zeitschrift fur Anorganische und Allgemeine Chemie Mogare 630 547 2004 10.1002/zaac.200400012 Syntheses and crystal structures of two sodium ruthenates: Na2RuO4 and Na2RuO3
J. Solid State Chem. Panin 180 1566 2007 10.1016/j.jssc.2007.03.005 Synthesis and crystal structure of the palladium oxides NaPd3O4, Na2PdO3 and K3Pd2O4
Inorg. Chem. Smaha 54 7985 2015 10.1021/acs.inorgchem.5b01186 Tuning sodium ion conductivity in the layered honeycomb oxide Na3-xSn2-xSbxNaO6
Phys. Rev. Lett. Choi 108 127204 2012 10.1103/PhysRevLett.108.127204 Spin waves and revised crystal structure of honeycomb iridate Na2IrO3
Zeitschrift fur Anorganische und Allgemeine Chemie Urland 392 23 1972 10.1002/zaac.19723920104 Zur kenntnis der oxoplatinate Na2PtO2, Na2PtO3, (K2PtO3) und (Rb2PO3)
Acta Crystallogr. B Cruickshank 34 1333 1978 10.1107/S0567740878005488 A reinvestigation of sodium metagermanate
Zeitschrift fur Anorganische und Allgemeine Chemie Sobotka 630 2377 2004 10.1002/zaac.200400314 Synthesis, crystal structures and properties of Na2ReO3 and of a second modification of Na5ReO6
J. Power Sources Song 342 685 2017 10.1016/j.jpowsour.2016.12.116 Na-rich layered Na2Ru0.95Zr0.05O3 cathode material for Na-ion batteries
Electrochem. Solid State Lett. Reed 4 A78 2001 10.1149/1.1368896 Layered-to-spinel phase transition in LixMnO2
J. Phys. Chem. Solids Shirane 10 35 1959 10.1016/0022-3697(59)90122-2 Neutron-diffraction study of antiferromagnetic FeTiO3 and its solid solutions with α-Fe2O3
Am. Mineral. Post 73 1401 1988 Chalcophanite, ZnMn3O7 3H2O: New crystal-structure determinations
Energy Environ. Sci. Nam 12 1999 2019 10.1039/C9EE00718K Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries
Science Owen 344 1451 2014 10.1126/science.1255819 Phase-transforming electrodes
Proc. Natl. Acad. Sci. U.S.A. Lim 111 599 2014 10.1073/pnas.1316557110 Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery
J. Chem. Phys. Heyd 118 8207 2003 10.1063/1.1564060 Erratum: “Hybrid functionals based on a screened Coulomb potential”
Phys. Rev. Lett. Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Generalized gradient approximation made simple
Green Energy and Environment Li 1 18 2016 10.1016/j.gee.2016.04.006 Progress in electrolytes for rechargeable Li-based batteries and beyond
npj Comput. Mater. Zhang 4 1 2018 10.1038/s41524-018-0070-2 An effective method to screen sodium-based layered materials for sodium ion batteries
Nat. Mater. Curtarolo 12 191 2013 10.1038/nmat3568 The high-throughput highway to computational materials design
Energy Environ. Sci. Thackeray 5 7854 2012 10.1039/c2ee21892e Electrical energy storage for transportation - approaching the limits of, and going beyond, lithium-ion batteries
Energy Environ. Sci. Liu 8 964 2015 10.1039/C4EE03389B Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations
Advanced Energy Materials Kirklin 3 252 2012 10.1002/aenm.201200593 High-throughput computational screening of new Li-ion battery anode materials
Nat. Mater. Wang 14 1026 2015 10.1038/nmat4369 Design principles for solid-state lithium superionic conductors
Nat. Commun. Aykol 7 13779 2016 10.1038/ncomms13779 High-throughput computational design of cathode coatings for Li-ion batteries
Phys. Rev. B Blochl 50 17953 1994 10.1103/PhysRevB.50.17953 Projector augmented-wave method
Comput. Mater. Sci. Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
Phys. Rev. B Monkhorst 13 5188 1976 10.1103/PhysRevB.13.5188 Special points for brillouin-zone integrations
Phys. Rev. B Dudarev 57 1505 1998 10.1103/PhysRevB.57.1505 Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
J. Chem. Phys. Grimme 132 154104 2010 10.1063/1.3382344 A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
J. Chem. Phys. Henkelman 113 9901 2000 10.1063/1.1329672 A climbing image nudged elastic band method for finding saddle points and minimum energy paths
Phys. Rev. B Wang 73 195107 2006 10.1103/PhysRevB.73.195107 Oxidation energies of transition metal oxides within the GGA+U framework
Barin 1989 Thermochemical Data of Pure Substances
Comput. Mater. Sci. Ceder 8 161 1997 10.1016/S0927-0256(97)00029-3 Application of first-principles calculations to the design of rechargeable Li-batteries
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.