최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature machine intelligence, v.2 no.1, 2020년, pp.34 - 42
Lee, Dongwook , Moon, Won-Jin , Ye, Jong Chul
초록이 없습니다.
IEEE Trans. Med. Imaging BH Menze 34 1993 2015 10.1109/TMI.2014.2377694 Menze, B. H. et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993-2024 (2015).
Sci. Data S Bakas 4 2017 10.1038/sdata.2017.117 Bakas, S. et al. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017).
J. School Psychol. AN Baraldi 48 5 2010 10.1016/j.jsp.2009.10.001 Baraldi, A. N. & Enders, C. K. An introduction to modern missing data analyses. J. School Psychol. 48, 5-37 (2010).
Am. J. Neuroradiol. LN Tanenbaum 38 1103 2017 10.3174/ajnr.A5227 Tanenbaum, L. N. et al. Synthetic MRI for clinical neuroimaging: results of the Magnetic Resonance Image Compilation (MAGiC) prospective, multicenter, multireader trial. Am. J. Neuroradiol. 38, 1103-1110 (2017).
Am. J. Neuroradiol. A Hagiwara 38 257 2017 10.3174/ajnr.A5012 Hagiwara, A. et al. Synthetic MRI in the detection of multiple sclerosis plaques. Am. J. Neuroradiol. 38, 257-263 (2017).
Invest. Radiol. A Hagiwara 52 647 2017 10.1097/RLI.0000000000000365 Hagiwara, A. et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest. Radiol. 52, 647 (2017).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012) (eds Pereira, F. et al.) 1097-1105 (Neural Information Processing Systems Foundation, 2012).
IEEE Trans. Image Processing K Zhang 26 3142 2017 10.1109/TIP.2017.2662206 Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Processing 26, 3142-3155 (2017).
IEEE Trans. Pattern Anal. Mach. Intell. C Dong 38 295 2016 10.1109/TPAMI.2015.2439281 Dong, C., Loy, C. C., He, K. & Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38, 295-307 (2016).
Xie, J., Xu, L. & Chen, E. Image denoising and inpainting with deep neural networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012) (eds Pereira, F. et al.) 341-349 (Neural Information Processing Systems Foundation, 2012).
Goodfellow, I. J. et al. Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (NIPS 2014) (eds Ghahramani, Z. et al.) 2672-2680 (Neural Information Processing Systems Foundation, 2014).
IEEE Trans. Med. Imaging SU Dar 38 2375 2019 10.1109/TMI.2019.2901750 Dar, S. U. et al. Image synthesis in multicontrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38, 2375-2388 (2019).
Liu, M.-Y., Breuel, T. & Kautz, J. Unsupervised image-to-image translation networks. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (eds Guyon, I. et al.) 700-708 (Neural Information Processing Systems Foundation, 2017).
Welander, P., Karlsson, S. & Eklund, A. Generative adversarial networks for image-to-image translation on multicontrast MR images-a comparison of CycleGAN and UNIT. Preprint at https://arxiv.org/abs/1806.07777 (2018).
10.1007/978-3-030-00889-5_20 Yang, H. et al. Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA 2018, ML-CDS 2018 (Lecture Notes in Computer Science Vol. 11045) 174-182 (Springer, 2018)..
Am. J. Neuroradiol. A Hagiwara 40 224 2019 10.3174/ajnr.A5927 Hagiwara, A. et al. Improving the quality of synthetic FLAIR images with deep learning using a conditional generative adversarial network for pixel-by-pixel image translation. Am. J. Neuroradiol. 40, 224-230 (2019).
Ecology LR Dice 26 297 1945 10.2307/1932409 Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297-302 (1945).
Salimans, T. et al. Improved techniques for training GANs. In Advances in Neural Information Processing Systems 29 (NIPS 2016) (eds Lee, D. D. et al.) 2234-2242 (Neural Information Processing Systems Foundation, 2016).
Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein GAN. Preprint at https://arxiv.org/abs/1701.07875 (2017).
IEEE Trans. Image Process. Z Wang 13 600 2004 10.1109/TIP.2003.819861 Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600-612 (2004).
Mathieu, M., Couprie, C. & LeCun, Y. Deep multi-scale video prediction beyond mean square error. Preprint at https://arxiv.org/abs/1511.05440 (2015).
IEEE Trans. Comput. Imaging H Zhao 3 47 2017 10.1109/TCI.2016.2644865 Zhao, H., Gallo, O., Frosio, I. & Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3, 47-57 (2017).
10.1007/978-3-319-24574-4_28 Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Navab, N. et al.) 234-241 (Lecture Notes in Computer Science Vol. 9351, Springer, 2015).
Chang, S., Park, S., Yang, J. & Kwak, N. Image translation to mixed-domain using sym-parameterized generative network. Preprint at https://arxiv.org/abs/1811.12362 (2018).
Proc. SPIE S Remedios 10575 105752I 2018 Remedios, S., Pham, D. L., Butman, J. A. & Roy, S. Classifying magnetic resonance image modalities with convolutional neural networks. Proc. SPIE 10575, 105752I (2018).
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-adaptation of feature detectors. Preprint at https://arxiv.org/abs/1207.0580 (2012).
J. Mach. Learning Res. N Srivastava 15 1929 2014 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learning Res. 15, 1929-1958 (2014).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.