$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Nonlinear gyrokinetic analysis of linear ohmic confinement to saturated ohmic confinement transition

Nuclear fusion. Fusion nucléaire. &n.Illigat;&n.Arligat;derny&n.ibreve; sintez. Fusión nuclear, v.60 no.3, 2020년, pp.036009 -   

Qi, L. (National Fusion Research Institute, Daejeon 169-148, Korea, Republic of) ,  Kwon, J.-M. (National Fusion Research Institute, Daejeon 169-148, Korea, Republic of) ,  Jhang, H. (National Fusion Research Institute, Daejeon 169-148, Korea, Republic of) ,  Hahm, T.S. (Department of Nuclear Engineering, Seoul National University, Seoul 151-742, Korea, Republic of) ,  Leconte, M. (National Fusion Research Institute, Daejeon 169-148, Korea, Republic of)

Abstract AI-Helper 아이콘AI-Helper

This work presents a nonlinear gyrokinetic analysis, which addresses one of the perennial conundrums in ohmically heated fusion plasmas. The widely observed linear ohmic confinement (LOC) to saturated ohmic confinement (SOC) transition of the energy confinement time with increasing density is succe...

참고문헌 (31)

  1. [1] Kikuchi M., Lackner K. and Tran M.Q. 2012 Fusion Physics (Vienna: IAEA) Kikuchi M., Lackner K. and Tran M.Q. Fusion Physics 2012 

  2. [2] Parker R.R. et al 1985 Progress in Tokamak research at MIT Nucl. Fusion 25 1127 10.1088/0029-5515/25/9/023 Progress in Tokamak research at MIT Parker R.R. et al Nucl. Fusion 0029-5515 25 9 023 1985 1127 

  3. [3] Brower D.L. et al 1987 Observation of a high-density ion mode in Tokamak microturbulence Phys. Rev. Lett. 59 48 10.1103/PhysRevLett.59.48 Observation of a high-density ion mode in Tokamak microturbulence Brower D.L. et al Phys. Rev. Lett. 0031-9007 59 1987 48 

  4. [4] Rettig C.L. et al 2001 Search for the ion temperature gradient mode in a tokamak plasma and comparison with theoretical predictions Phys. Plasmas 8 2232 10.1063/1.1362537 Search for the ion temperature gradient mode in a tokamak plasma and comparison with theoretical predictions Rettig C.L. et al Phys. Plasmas 8 2001 2232 

  5. [5] Angioni C. et al 2005 Relationship between density peaking, particle thermodiffusion, ohmic confinement, and microinstabilities in ASDEX Upgrade L-mode plasmas Phys. Plasmas 12 040701 10.1063/1.1867492 Relationship between density peaking, particle thermodiffusion, ohmic confinement, and microinstabilities in ASDEX Upgrade L-mode plasmas Angioni C. et al Phys. Plasmas 12 040701 2005 

  6. [6] Shi Y.J. et al 2017 Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas Nucl. Fusion 57 066040 10.1088/1741-4326/aa6b23 Intrinsic rotation reversal, non-local transport, and turbulence transition in KSTAR L-mode plasmas Shi Y.J. et al Nucl. Fusion 0029-5515 57 6 066040 2017 

  7. [7] Wagner F. and Stroth U. 1993 Transport in toroidal devices-the experimentalist’s view Plasma Phys. Control. Fusion 35 1321 10.1088/0741-3335/35/10/002 Transport in toroidal devices-the experimentalist’s view Wagner F. and Stroth U. Plasma Phys. Control. Fusion 0741-3335 35 10 002 1993 1321 

  8. [8] Conway G.D. et al 2006 Observations on core turbulence transitions in ASDEX Upgrade using Doppler reflectometry Nucl. Fusion 46 S799 10.1088/0029-5515/46/9/S15 Observations on core turbulence transitions in ASDEX Upgrade using Doppler reflectometry Conway G.D. et al Nucl. Fusion 0029-5515 46 9 S15 2006 S799 

  9. [9] Lin L. et al 2009 Studies of turbulence and transport in alcator C-Mod ohmic plasmas with phase contrast imaging and comparisons with gyrokinetic simulations Plasma Phys. Control. Fusion 51 065006 10.1088/0741-3335/51/6/065006 Studies of turbulence and transport in alcator C-Mod ohmic plasmas with phase contrast imaging and comparisons with gyrokinetic simulations Lin L. et al Plasma Phys. Control. Fusion 0741-3335 51 6 065006 2009 

  10. [10] Sung C. et al 2013 Changes in core electron temperature fluctuations across the ohmic energy confinement transition in alcator C-Mod plasmas Nucl. Fusion 53 083010 10.1088/0029-5515/53/8/083010 Changes in core electron temperature fluctuations across the ohmic energy confinement transition in alcator C-Mod plasmas Sung C. et al Nucl. Fusion 0029-5515 53 8 083010 2013 

  11. [11] Cao N.M. et al 2019 Hysteresis as a probe of turbulent bifurcation in intrinsic rotation reversals on alcator C-Mod Nucl. Fusion 59 104001 10.1088/1741-4326/ab3b38 Hysteresis as a probe of turbulent bifurcation in intrinsic rotation reversals on alcator C-Mod Cao N.M. et al Nucl. Fusion 0029-5515 59 10 104001 2019 

  12. [12] Erofeev I., Fable E., Angioni C., McDermott R.M. and The ASDEX Upgrade Team 2017 Theory-based modeling of LOC–SOC transitions in ASDEX Upgrade Nucl. Fusion 57 126067 10.1088/1741-4326/aa8e32 Theory-based modeling of LOC–SOC transitions in ASDEX Upgrade Erofeev I., Fable E., Angioni C., McDermott R.M. and The ASDEX Upgrade Team Nucl. Fusion 0029-5515 57 12 126067 2017 

  13. [13] Grierson B.A. et al 2019 Main-ion intrinsic toroidal rotation across the ITG/TEM bounday in DIII-D discharges during ohmic and electron cyclotron heating Phys. Plasmas 26 042304 10.1063/1.5090505 Main-ion intrinsic toroidal rotation across the ITG/TEM bounday in DIII-D discharges during ohmic and electron cyclotron heating Grierson B.A. et al Phys. Plasmas 26 042304 2019 

  14. [14] Arnichand H. et al 2016 Identification of trapped electron modes in frequency fluctuation spectra Plasma Phys. Control. Fusion 58 014037 10.1088/0741-3335/58/1/014037 Identification of trapped electron modes in frequency fluctuation spectra Arnichand H. et al Plasma Phys. Control. Fusion 0741-3335 58 1 014037 2016 

  15. [15] Citrin J., Arnichand H., Bernardo J., Bourdelle C., Garbet X., Jenko F., Hacquin S., Pueschel M.J. and Sabot R. 2017 Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes Plasma Phys. Control. Fusion 59 064010 10.1088/1361-6587/aa6d1d Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes Citrin J., Arnichand H., Bernardo J., Bourdelle C., Garbet X., Jenko F., Hacquin S., Pueschel M.J. and Sabot R. Plasma Phys. Control. Fusion 0741-3335 59 6 064010 2017 

  16. [16] Kwon J.-M. et al 2012 Analysis of symmetry breaking mechanisms and the role of turbulence self-regulation in intrinsic rotation Nucl. Fusion 52 013004 10.1088/0029-5515/52/1/013004 Analysis of symmetry breaking mechanisms and the role of turbulence self-regulation in intrinsic rotation Kwon J.-M. et al Nucl. Fusion 0029-5515 52 1 013004 2012 

  17. [17] Kwon J.-M. et al 2017 ITG–TEM turbulence simulation with bounce-averaged kinetic electrons in tokamak geometry Comput. Phys. Commun. 215 81–90 10.1016/j.cpc.2017.02.009 ITG–TEM turbulence simulation with bounce-averaged kinetic electrons in tokamak geometry Kwon J.-M. et al Comput. Phys. Commun. 0010-4655 215 2017 81 90 

  18. [18] Fong B.H. and Hahm T.S. 1999 Bounce-averaged kinetic equations and neoclassical polarization density Phys. Plasmas 6 188 10.1063/1.873272 Bounce-averaged kinetic equations and neoclassical polarization density Fong B.H. and Hahm T.S. Phys. Plasmas 6 1999 188 

  19. [19] Qi L. et al 2016 Gyrokinetic simulations of electrostatic microinstabilities with bounce-averaged kinetic electrons for shaped tokamak plasmas Phys. Plasmas 23 062513 10.1063/1.4954050 Gyrokinetic simulations of electrostatic microinstabilities with bounce-averaged kinetic electrons for shaped tokamak plasmas Qi L. et al Phys. Plasmas 23 062513 2016 

  20. [20] Rice J.E. et al 2011 Rotation reversal bifurcation and energy confinement saturation in tokamak ohmic L-mode plasmas Phys. Rev. Lett. 107 265001 10.1103/PhysRevLett.107.265001 Rotation reversal bifurcation and energy confinement saturation in tokamak ohmic L-mode plasmas Rice J.E. et al Phys. Rev. Lett. 107 265001 2011 

  21. [21] Qi L., Kwon J.-M., Hahm T.S., Yi S. and Choi M.J. 2019 Characteristics of trapped electron transport, zonal flow staircase, turbulence fluctuation spectra in elongated tokamak plasmas Nucl. Fusion 59 026013 10.1088/1741-4326/aaf5fd Characteristics of trapped electron transport, zonal flow staircase, turbulence fluctuation spectra in elongated tokamak plasmas Qi L., Kwon J.-M., Hahm T.S., Yi S. and Choi M.J. Nucl. Fusion 0029-5515 59 2 026013 2019 

  22. [22] Merz F. and Jenko F. 2010 Nonlinear interplay of TEM and ITG turbulence and its effect on transport Nucl. Fusion 50 054005 10.1088/0029-5515/50/5/054005 Nonlinear interplay of TEM and ITG turbulence and its effect on transport Merz F. and Jenko F. Nucl. Fusion 0029-5515 50 5 054005 2010 

  23. [23] Adam J.C. and Tang W.M. 1976 Destabilization of the trapped electron mode by magnetic curvature drift resonances Phys. Fluids 19 561 10.1063/1.861489 Destabilization of the trapped electron mode by magnetic curvature drift resonances Adam J.C. and Tang W.M. Phys. Fluids 0031-9171 19 1976 561 

  24. [24] Ennever P. et al 2015 The effects of dilution on turbulence and transport in C-Mod ohmic plasmas and comparisons with gyrokinetic simulations Phys. Plasmas 22 072507 10.1063/1.4926518 The effects of dilution on turbulence and transport in C-Mod ohmic plasmas and comparisons with gyrokinetic simulations Ennever P. et al Phys. Plasmas 22 072507 2015 

  25. [25] Lin Z., Hahm T.S., Lee W.W., Tang W.M. and Diamond P.H. 1999 Effects of collisional zonal flow damping on turbulent transport Phys. Rev. Lett. 83 3645 10.1103/PhysRevLett.83.3645 Effects of collisional zonal flow damping on turbulent transport Lin Z., Hahm T.S., Lee W.W., Tang W.M. and Diamond P.H. Phys. Rev. Lett. 83 1999 3645 

  26. [26] Xiao Y., Catto P.J. and Molvig K. 2007 Collisional damping for ion temperature gradient mode driven zonal flow Phys. Plasmas 14 032302 10.1063/1.2536297 Collisional damping for ion temperature gradient mode driven zonal flow Xiao Y., Catto P.J. and Molvig K. Phys. Plasmas 14 032302 2007 

  27. [27] Xiao Y. and Catto P.J. 2007 Effects of finite poloidal gyroradius, shaping and collisions on the zonal flow residual Phys. Plasmas 14 055910 10.1063/1.2718519 Effects of finite poloidal gyroradius, shaping and collisions on the zonal flow residual Xiao Y. and Catto P.J. Phys. Plasmas 14 055910 2007 

  28. [28] Yan Z., Gohil P., McKee G.R., Eldon D., Grierson B., Rhodes T. and Petty C.C. 2017 Turbulence and sheared flow structures behind the isotopic dependence of the L-H power threshold on DIII-D Nucl. Fusion 57 126015 10.1088/1741-4326/aa82c9 Turbulence and sheared flow structures behind the isotopic dependence of the L-H power threshold on DIII-D Yan Z., Gohil P., McKee G.R., Eldon D., Grierson B., Rhodes T. and Petty C.C. Nucl. Fusion 0029-5515 57 12 126015 2017 

  29. [29] Lackner K. et al 1989 Confinement regime transitions in ASDEX Plasma Phys. Control. Fusion 31 1629 10.1088/0741-3335/31/10/011 Confinement regime transitions in ASDEX Lackner K. et al Plasma Phys. Control. Fusion 0741-3335 31 10 011 1989 1629 

  30. [30] Greenwald M. et al 1984 Energy confinement of high-density pellet-fueled plasmas in the Alcator C tokamak Phys. Rev. Lett. 53 352 10.1103/PhysRevLett.53.352 Energy confinement of high-density pellet-fueled plasmas in the Alcator C tokamak Greenwald M. et al Phys. Rev. Lett. 0031-9007 53 1984 352 

  31. [31] Wagner F. 2018 The history of research into improved confinement regimes Eur. Phys. J. H 43 523–49 10.1140/epjh/e2016-70064-9 The history of research into improved confinement regimes Wagner F. Eur. Phys. J. 43 H 2018 523 549 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로