$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mumford–Shah Loss Functional for Image Segmentation With Deep Learning 원문보기

IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, v.29, 2020년, pp.1856 - 1866  

Kim, Boah (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Ye, Jong Chul (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Recent state-of-the-art image segmentation algorithms are mostly based on deep neural networks, thanks to their high performance and fast computation time. However, these methods are usually trained in a supervised manner, which requires large number of high quality ground-truth segmentation masks. ...

참고문헌 (53)

  1. 10.1109/ICRA.2018.8461108 

  2. Proc Brit Mach Vis Conf (BMVC) Adversarial learning for semi-supervised semantic segmentation hung 2018 1 

  3. IEEE Trans Image Process A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI li 2011 10.1109/TIP.2011.2146190 20 2007 

  4. 10.1109/CVPR.2005.332 

  5. 10.1109/IJCNN.2016.7727595 

  6. Comaniciu, D., Meer, P.. Mean shift: a robust approach toward feature space analysis. IEEE transactions on pattern analysis and machine intelligence, vol.24, no.5, 603-619.

  7. 10.1109/ICCV.2017.606 

  8. arXiv 1604 00494 [cs] A fully convolutional neural network for cardiac segmentation in short-axis MRI tran 2016 

  9. 10.1007/978-3-319-46723-8_48 

  10. Proc Adv Neural Inf Process Syst Efficient inference in fully connected CRFs with Gaussian edge potentials krähenbühl 2011 109 

  11. Procedia Computer Science Image segmentation using K-means clustering algorithm and subtractive clustering algorithm dhanachandra 2015 10.1016/j.procs.2015.06.090 54 764 

  12. Chambolle, Antonin, Pock, Thomas. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of mathematical imaging and vision, vol.40, no.1, 120-145.

  13. Chen, C.W., Luo, J., Parker, K.J.. Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.7, no.12, 1673-1683.

  14. 10.1117/12.844565 

  15. Leibe, Bastian, Leonardis, Aleš, Schiele, Bernt. Robust Object Detection with Interleaved Categorization and Segmentation. International journal of computer vision, vol.77, no.1, 259-289.

  16. 10.1109/ICCV.2001.937505 

  17. Chaijie Duan, Zhengrong Liang, Shangliang Bao, Hongbin Zhu, Su Wang, Guangxiang Zhang, Chen, J.J., Hongbing Lu. A Coupled Level Set Framework for Bladder Wall Segmentation With Application to MR Cystography. IEEE transactions on medical imaging, vol.29, no.3, 903-915.

  18. 10.1109/IEMBS.2006.259615 

  19. 10.1109/CVPR.2007.383014 

  20. Tsai, A., Yezzi Jr., A., Willsky, A.S.. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.10, no.8, 1169-1186.

  21. IEEE Trans Image Process Distance regularized level set evolution and its application to image segmentation li 2010 10.1109/TIP.2010.2069690 19 3243 

  22. Caselles, Vicent, Catt�, Francine, Coll, Tomeu, Dibos, Fran�oise. A geometric model for active contours in image processing. Numerische Mathematik, vol.66, no.1, 1-31.

  23. LiTSliver Tumor Segmentation Challenge (Lits17) christ 2017 

  24. Menze, Bjoern H., Jakab, Andras, Bauer, Stefan, Kalpathy-Cramer, Jayashree, Farahani, Keyvan, Kirby, Justin, Burren, Yuliya, Porz, Nicole, Slotboom, Johannes, Wiest, Roland, Lanczi, Levente, Gerstner, Elizabeth, Weber, Marc-Andre, Arbel, Tal, Avants, Brian B., Ayache, Nicholas, Buendia, Patricia, Collins, D. Louis, Cordier, Nicolas, Corso, Jason J., Criminisi, Antonio, Das, Tilak, Delingette, Herve, Demiralp, Cagatay, Durst, Christopher R., Dojat, Michel, Doyle, Senan, Festa, Joana, Forbes, Florence, Geremia, Ezequiel, Glocker, Ben, Golland, Polina, Xiaotao Guo, Hamamci, Andac, Iftekharuddin, Khan M., Jena, Raj, John, Nigel M., Konukoglu, Ender, Lashkari, Danial, Mariz, Jose Antonio, Meier, Raphael, Pereira, Sergio, Precup, Doina, Price, Stephen J., Riklin Raviv, Tammy, Reza, Syed M. S., Ryan, Michael, Sarikaya, Duygu, Schwartz, Lawrence, Hoo-Chang Shin, Shotton, Jamie, Silva, Carlos A., Sousa, Nuno, Subbanna, Nagesh K., Szekely, Ga. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE transactions on medical imaging, vol.34, no.10, 1993-2024.

  25. Proc Int Conf Machine Learn (ICML) Conditional random fields: Probabilistic models for segmenting and labeling sequence data lafferty 2001 282 

  26. Cycle-consistent adversarial network with polyphase U-Nets for liver lesion segmentation kim 0 

  27. Proc Int Conf Med Image Comput Comput -Assist Intervent U-net: Convolutional networks for biomedical image segmentation ronneberger 2015 234 

  28. Proc Adv Neural Inf Process Syst Decoupled deep neural network for semi-supervised semantic segmentation hong 2015 1495 

  29. 10.1109/ICASSP.2017.7952482 

  30. 10.1109/ICCV.2015.203 

  31. 10.1109/CVPR.2015.7298780 

  32. 10.1007/978-3-319-46484-8_6 

  33. 10.1109/ICCV.2015.191 

  34. Mumford, David, Shah, Jayant. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on pure and applied mathematics, vol.42, no.5, 577-685.

  35. Vese, Luminita A.; Chan, Tony F. etc. "A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model." International journal of computer vision, v.50 no.3 (2002), pp. 271-293, doi:10.1023/A:1020874308076.

  36. Int J Adv Res Comput Eng Technol Color image segmentationusing clustering baldevbhai 2012 1 563 

  37. Shi, Jianbo, Malik, J.. Normalized cuts and image segmentation. IEEE transactions on pattern analysis and machine intelligence, vol.22, no.8, 888-905.

  38. CERNAZANU-GLAVAN, C., HOLBAN, S.. Segmentation of Bone Structure in X-ray Images using Convolutional Neural Network. Advances in electrical and computer engineering, vol.13, no.1, 87-94.

  39. Medscape Gen Med Brain white and gray matter anatomy of MRI segmentation based on tissue evaluation salih 2005 7 1 

  40. 10.1109/CVPRW.2016.90 

  41. Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, Yuille, Alan L.. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE transactions on pattern analysis and machine intelligence, vol.40, no.4, 834-848.

  42. 10.1109/ICCV.2015.178 

  43. Badrinarayanan, Vijay, Kendall, Alex, Cipolla, Roberto. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE transactions on pattern analysis and machine intelligence, vol.39, no.12, 2481-2495.

  44. 10.1109/ICCV.2011.6126343 

  45. 10.1109/CVPR.2015.7298965 

  46. 10.1007/b98879 

  47. Le, T. Hoang Ngan, Quach, Kha Gia, Luu, Khoa, Duong, Chi Nhan, Savvides, Marios. Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.27, no.5, 2393-2407.

  48. Everingham, Mark, Van Gool, Luc, Williams, Christopher K. I., Winn, John, Zisserman, Andrew. The Pascal Visual Object Classes (VOC) Challenge. International journal of computer vision, vol.88, no.2, 303-338.

  49. Proc 27th Int Conf Mach Learn (ICML) Learning fast approximations of sparse coding gregor 2010 399 

  50. 10.1117/12.2293414 

  51. arXiv 1711 08506 W-net: A deep model for fully unsupervised image segmentation xia 2017 

  52. 10.5614/itbj.ict.res.appl.2017.11.3.5 

  53. 10.1109/ICASSP.2018.8462533 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로