최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Microbial biotechnology, v.13 no.1, 2020년, pp.210 - 221
Kim, Seong Keun (Synthetic Biology and Bioengineering Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Korea) , Yoon, Paul K. (Synthetic Biology and Bioengineering Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Korea) , Kim, Soo‐Jung (Synthetic Biology and Bioengineering Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Korea) , Woo, Seung‐Gyun (Synthetic Biology and Bioengineering Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Korea) , Rha, Eugene (Synthetic Biology and Bioengineering Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Korea) , Lee, Hyewon (Synthetic Biology and Bioengineering Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Korea) , Yeom, Soo‐Jin (Synthetic Biology and Bioengineering Research Center Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Korea) , Kim, Haseong (Synthetic Biology an) , Lee, Dae‐Hee , Lee, Seung‐Goo
SummaryTargeted gene regulation is indispensable for reprogramming a cellular network to modulate a microbial phenotype. Here, we adopted the type II CRISPR interference (CRISPRi) system for simple and efficient regulation of target genes in Pseudomonas putida KT2440. A single CRISPRi plasmid was ge...
Abril, M A, Michan, C, Timmis, K N, Ramos, J L. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. Journal of bacteriology, vol.171, no.12, 6782-6790.
Bikard, David, Jiang, Wenyan, Samai, Poulami, Hochschild, Ann, Zhang, Feng, Marraffini, Luciano A.. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic acids research, vol.41, no.15, 7429-7437.
Bondy-Denomy, Joseph, Garcia, Bianca, Strum, Scott, Du, Mingjian, Rollins, MaryClare F., Hidalgo-Reyes, Yurima, Wiedenheft, Blake, Maxwell, Karen L., Davidson, Alan R.. Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature, vol.526, no.7571, 136-139.
Calero, Patricia, Jensen, Sheila I., Nielsen, Alex T.. Broad-Host-Range ProUSER Vectors Enable Fast Characterization of Inducible Promoters and Optimization of p-Coumaric Acid Production in Pseudomonas putida KT2440. ACS Synthetic biology, vol.5, no.7, 741-753.
Cho, Suhyung, Shin, Jongoh, Cho, Byung-Kwan. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. International journal of molecular sciences, vol.19, no.4, 1089-.
Cook, Taylor B, Rand, Jacqueline M, Nurani, Wasti, Courtney, Dylan K, Liu, Sophia A, Pfleger, Brian F. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. Journal of industrial microbiology & biotechnology, vol.45, no.7, 517-527.
Escapa, I. F., del Cerro, C., García, J. L., Prieto, M. A.. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environmental microbiology, vol.15, no.1, 93-110.
Giacalone, Matthew J., Gentile, Angela M., Lovitt, Brian T., Berkley, Neil L., Gunderson, Carl W., Surber, Mark W.. Toxic Protein Expression in Escherichia Coli Using a Rhamnose-Based Tightly Regulated and Tunable Promoter System. Biotechniques, vol.40, no.3, 355-364.
Gilbert, Luke A., Larson, Matthew H., Morsut, L., Liu, Z., Brar, Gloria A., Torres, Sandra E., Stern-Ginossar, N., Brandman, O., Whitehead, Evan H., Doudna, Jennifer A., Lim, Wendell A., Weissman, Jonathan S., Qi, Lei S.. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, vol.154, no.2, 442-451.
Han, Gui Hwan, Kim, Seong Keun, Yoon, Paul Kyung-Seok, Kang, Younghwan, Kim, Byoung Su, Fu, Yaoyao, Sung, Bong Hyun, Jung, Heung Chae, Lee, Dae-Hee, Kim, Seon-Won, Lee, Seung-Goo. Fermentative production and direct extraction of (−)-α-bisabolol in metabolically engineered Escherichia coli. Microbial cell factories, vol.15, 185-.
Hintermayer, Sarah Beate, Weuster‐Botz, Dirk. Experimental validation of in silico estimated biomass yields of Pseudomonas putida KT2440. Biotechnology journal, vol.12, no.6, 1600720-.
Hjelm, Anna, Karyolaimos, Alexandros, Zhang, Zhe, Rujas, Edurne, Vikström, David, Slotboom, Dirk Jan, de Gier, Jan-Willem. Tailoring Escherichia coli for the l-Rhamnose PBAD Promoter-Based Production of Membrane and Secretory Proteins. ACS Synthetic biology, vol.6, no.6, 985-994.
Jeske, Marcel, Altenbuchner, Josef. The Escherichia coli rhamnose promoter rhaP BAD is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Applied microbiology and biotechnology, vol.85, no.6, 1923-1933.
Kim, Seong Keun, Han, Gui Hwan, Seong, Wonjae, Kim, Haseong, Kim, Seon-Won, Lee, Dae-Hee, Lee, Seung-Goo. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metabolic engineering, vol.38, 228-240.
Kim, Seong Keun, Kim, Haseong, Ahn, Woo-Chan, Park, Kwang-Hyun, Woo, Eui-Jeon, Lee, Dae-Hee, Lee, Seung-Goo. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synthetic biology, vol.6, no.7, 1273-1282.
Komor, Alexis C., Badran, Ahmed H., Liu, David R.. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, vol.168, no.1, 20-36.
Kuepper, Jannis, Dickler, Jasmin, Biggel, Michael, Behnken, Swantje, Jäger, Gernot, Wierckx, Nick, Blank, Lars M.. Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose. Frontiers in microbiology, vol.6, 1310-.
Larson, Matthew H, Gilbert, Luke A, Wang, Xiaowo, Lim, Wendell A, Weissman, Jonathan S, Qi, Lei S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature protocols, vol.8, no.11, 2180-2196.
Lee, Kyung-Ho, Min, Seung-Eui, Kim, Haseong, Lee, Seung-Goo, Kim, Dong-Myung. A molecular nanodevice for targeted degradation of mRNA during protein synthesis. Scientific reports, vol.6, 20733-.
Liao, P., Hemmerlin, A., Bach, T.J., Chye, M.L.. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnology advances, vol.34, no.5, 697-713.
Loeschcke, Anita, Thies, Stephan. Pseudomonas putida —a versatile host for the production of natural products. Applied microbiology and biotechnology, vol.99, no.15, 6197-6214.
Luo, Xi, Yang, Yunwen, Ling, Wen, Zhuang, Hao, Li, Qin, Shang, Guangdong, Calendar, Richard. Pseudomonas putidaKT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxPsite-specific recombination. FEMS microbiology letters, vol.363, no.4, fnw014-.
Ma, X., Zhu, Q., Chen, Y., Liu, Y.G.. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. Molecular plant = 分子植物 英文版, vol.9, no.7, 961-974.
Martínez‐García, Esteban, de Lorenzo, Víctor. Engineering multiple genomic deletions in Gram‐negative bacteria: analysis of the multi‐resistant antibiotic profile of Pseudomonas putida KT2440. Environmental microbiology, vol.13, no.10, 2702-2716.
Nikel, P.I., de Lorenzo, V.. Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. New biotechnology, vol.31, no.6, 562-571.
Nikel, Pablo I., de Lorenzo, Víctor. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metabolic engineering, vol.50, 142-155.
Nikel, Pablo I., Romero-Campero, Francisco J., Zeidman, Joshua A., Goñi-Moreno, Ángel, de Lorenzo, Víctor. The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor. mBio, vol.6, no.2, e00340-15-.
Nikel, P.I., Chavarria, M., Danchin, A., de Lorenzo, V.. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Current opinion in chemical biology, vol.34, 20-29.
Nogales, Juan, Palsson, Bernhard Ø, Thiele, Ines. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: i JN746 as a cell factory. BMC systems biology, vol.2, 79-79.
Peters, Jason M., Colavin, Alexandre, Shi, Handuo, Czarny, Tomasz L., Larson, Matthew H., Wong, Spencer, Hawkins, John S., Lu, Candy H.S., Koo, Byoung-Mo, Marta, Elizabeth, Shiver, Anthony L., Whitehead, Evan H., Weissman, Jonathan S., Brown, Eric D., Qi, Lei S., Huang, Kerwyn Casey, Gross, Carol A.. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell, vol.165, no.6, 1493-1506.
Qi, Lei S., Larson, Matthew H., Gilbert, Luke A., Doudna, Jennifer A., Weissman, Jonathan S., Arkin, Adam P., Lim, Wendell A.. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, vol.152, no.5, 1173-1183.
Silva-Rocha, Rafael, Martínez-García, Esteban, Calles, Belén, Chavarría, Max, Arce-Rodríguez, Alejandro, de las Heras, Aitor, Páez-Espino, A. David, Durante-Rodríguez, Gonzalo, Kim, Juhyun, Nikel, Pablo I., Platero, Raúl, de Lorenzo, Víctor. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic acids research, vol.41, no.1, D666-D675.
Sohn, Seung Bum, Kim, Tae Yong, Park, Jong Myoung, Lee, Sang Yup. In silico genome‐scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnology journal, vol.5, no.7, 739-750.
Sun, Jun, Wang, Qingzhuo, Jiang, Yu, Wen, Zhiqiang, Yang, Lirong, Wu, Jianping, Yang, Sheng. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microbial cell factories, vol.17, 41-.
Tan, Sue Zanne, Reisch, Christopher R., Prather, Kristala L. J.. A Robust CRISPR Interference Gene Repression System in Pseudomonas. Journal of bacteriology, vol.200, no.7, e00575-17-e00575-17.
Wang, Hong-hui, Zhou, Xin-rong, Liu, Qian, Chen, Guo-Qiang. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Applied microbiology and biotechnology, vol.89, no.5, 1497-1507.
Wegerer, Angelika, Sun, Tianqi, Altenbuchner, Josef. Optimization of an E. coli L-rhamnose-inducible expression vector: test of various genetic module combinations. BMC biotechnology, vol.8, 2-2.
Xiong, Mingyong, Schneiderman, Deborah K., Bates, Frank S., Hillmyer, Marc A., Zhang, Kechun. Scalable production of mechanically tunable block polymers from sugar. Proceedings of the National Academy of Sciences of the United States of America, vol.111, no.23, 8357-8362.
Yu, Shiqin, Plan, Manuel R., Winter, Gal, Krömer, Jens O.. Metabolic Engineering of Pseudomonas putida KT2440 for the Production of para -Hydroxy Benzoic Acid. Frontiers in bioengineering and biotechnology, vol.4, 90-.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.