$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy 원문보기

Journal of immunology research, v.2020, 2020년, pp.2045860 -   

Noh, Ji-Yoon (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea) ,  Yoon, Suk Ran (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea) ,  Kim, Tae-Don (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea) ,  Choi, Inpyo (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea) ,  Jung, Haiyoung (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Innate immunity represents the first barrier for host defense against microbial infection. Toll-like receptors (TLRs) are the most well-defined PRRs with respect to PAMP recognition and induction of innate immune responses. They recognize pathogen-associated molecular patterns (PAMPs) and trigger in...

참고문헌 (100)

  1. 1 Kawai T. Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors Nature Immunology 2010 11 5 373 384 10.1038/ni.1863 2-s2.0-77951260924 20404851 

  2. 2 Takeda K. Akira S. Toll-like receptors in innate immunity International Immunology 2005 17 1 1 14 10.1093/intimm/dxh186 2-s2.0-12444341944 15585605 

  3. 3 Yoneyama M. Fujita T. RNA recognition and signal transduction by RIG-I-like receptors Immunological Reviews 2009 227 1 54 65 10.1111/j.1600-065X.2008.00727.x 2-s2.0-58049217490 19120475 

  4. 4 Lee C. C. Avalos A. M. Ploegh H. L. Accessory molecules for Toll-like receptors and their function Nature Reviews Immunology 2012 12 3 168 179 10.1038/nri3151 2-s2.0-84862804952 22301850 

  5. 5 O'Neill L. A. Golenbock D. Bowie A. G. The history of Toll-like receptors - redefining innate immunity Nature Reviews Immunology 2013 13 6 453 460 10.1038/nri3446 2-s2.0-84878232476 23681101 

  6. 6 Adib-Conquy M. Scott-Algara D. Cavaillon J. M. Souza-Fonseca-Guimaraes F. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals Immunology and Cell Biology 2014 92 3 256 262 10.1038/icb.2013.99 2-s2.0-84898972548 24366517 

  7. 7 Nowarski R. Gagliani N. Huber S. Flavell R. A. Innate immune cells in inflammation and cancer Cancer Immunology Research 2013 1 2 77 84 10.1158/2326-6066.CIR-13-0081 2-s2.0-84883774153 24777498 

  8. 8 Souza-Fonseca-Guimaraes F. Adib-Conquy M. Cavaillon J. M. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Molecular Medicine 2012 18 270 285 10.2119/molmed.2011.00201 22105606 

  9. 9 Hargreaves D. C. Medzhitov R. Innate sensors of microbial infection Journal of Clinical Immunology 2005 25 6 503 510 10.1007/s10875-005-8065-4 2-s2.0-29444453359 16380814 

  10. 10 Zitti B. Bryceson Y. T. Natural killer cells in inflammation and autoimmunity Cytokine & Growth Factor Reviews 2018 42 37 46 10.1016/j.cytogfr.2018.08.001 2-s2.0-85051694792 30122459 

  11. 11 Sivori S. Carlomagno S. Pesce S. Moretta A. Vitale M. Marcenaro E. TLR/NCR/KIR: which one to use and when? Frontiers in Immunology 2014 5 p. 105 10.3389/fimmu.2014.00105 2-s2.0-84897953752 24678311 

  12. 12 Vivier E. Raulet D. H. Moretta A. Innate or adaptive immunity? The example of natural killer cells Science 2011 331 6013 44 49 10.1126/science.1198687 2-s2.0-78650970845 21212348 

  13. 13 Akira S. Takeda K. Toll-like receptor signalling Nature Reviews Immunology 2004 4 7 499 511 10.1038/nri1391 2-s2.0-3142724031 15229469 

  14. 14 Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling Nature 2004 430 6996 257 263 10.1038/nature02761 2-s2.0-3142654210 15241424 

  15. 15 Wagner H. Endogenous TLR ligands and autoimmunity Advances in Immunology 2006 91 159 173 10.1016/S0065-2776(06)91004-9 2-s2.0-33747815094 16938540 

  16. 16 Vaknin I. Blinder L. Wang L. A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression Blood 2008 111 3 1437 1447 10.1182/blood-2007-07-100404 2-s2.0-38949181003 17991807 

  17. 17 Kawai T. Akira S. TLR signaling Cell Death and Differentiation 2006 13 5 816 825 10.1038/sj.cdd.4401850 2-s2.0-33645960706 16410796 

  18. 18 Akira S. Uematsu S. Takeuchi O. Pathogen recognition and innate immunity Cell 2006 124 4 783 801 10.1016/j.cell.2006.02.015 2-s2.0-32944464648 16497588 

  19. 19 Xu Y. Tao X. Shen B. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains Nature 2000 408 6808 111 115 10.1038/35040600 2-s2.0-0034597766 11081518 

  20. 20 Patel H. Shaw S. G. Shi-Wen X. Abraham D. Baker D. M. Tsui J. C. Toll-like receptors in ischaemia and its potential role in the pathophysiology of muscle damage in critical limb ischaemia Cardiology Research and Practice 2012 2012 13 121237 10.1155/2012/121237 2-s2.0-84858262307 22454775 

  21. 21 Jin M. S. Kim S. E. Heo J. Y. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide Cell 2007 130 6 1071 1082 10.1016/j.cell.2007.09.008 2-s2.0-34548608447 17889651 

  22. 22 Kang J. Y. Nan X. Jin M. S. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer Immunity 2009 31 6 873 884 10.1016/j.immuni.2009.09.018 2-s2.0-71749118913 19931471 

  23. 23 Alexopoulou L. Holt A. C. Medzhitov R. Flavell R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 Nature 2001 413 6857 732 738 10.1038/35099560 2-s2.0-0035909372 11607032 

  24. 24 Choe J. Kelker M. S. Wilson I. A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain Science 2005 309 5734 581 585 10.1126/science.1115253 2-s2.0-23044445303 15961631 

  25. 25 Bell J. K. Askins J. Hall P. R. Davies D. R. Segal D. M. The dsRNA binding site of human Toll-like receptor 3 Proceedings of the National Academy of Sciences of the United States of America 2006 103 23 8792 8797 10.1073/pnas.0603245103 2-s2.0-33745048928 16720699 

  26. 26 Hoshino K. Takeuchi O. Kawai T. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product Journal of Immunology 1999 162 3749 3752 

  27. 27 Akashi-Takamura S. Miyake K. TLR accessory molecules Current Opinion in Immunology 2008 20 4 420 425 10.1016/j.coi.2008.07.001 2-s2.0-48549097267 18625310 

  28. 28 Kawai T. Akira S. Innate immune recognition of viral infection Nature Immunology 2006 7 2 131 137 10.1038/ni1303 2-s2.0-31344461659 16424890 

  29. 29 Hornung V. Guenthner-Biller M. Bourquin C. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7 Nature Medicine 2005 11 3 263 270 10.1038/nm1191 2-s2.0-20144389695 15723075 

  30. 30 Heil F. Hemmi H. Hochrein H. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 Science 2004 303 5663 1526 1529 10.1126/science.1093620 2-s2.0-1542317578 14976262 

  31. 31 Heil F. Ahmad-Nejad P. Hemmi H. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily European Journal of Immunology 2003 33 11 2987 2997 10.1002/eji.200324238 2-s2.0-0242391997 14579267 

  32. 32 Jurk M. Heil F. Vollmer J. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848 Nature Immunology 2002 3 6 p. 499 10.1038/ni0602-499 2-s2.0-0036088492 12032557 

  33. 33 Hemmi H. Takeuchi O. Kawai T. A Toll-like receptor recognizes bacterial DNA Nature 2000 408 6813 740 745 10.1038/35047123 2-s2.0-0034619794 11130078 

  34. 34 Krug A. French A. R. Barchet W. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function Immunity 2004 21 1 107 119 10.1016/j.immuni.2004.06.007 2-s2.0-3142683548 15345224 

  35. 35 Lund J. Sato A. Akira S. Medzhitov R. Iwasaki A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells The Journal of Experimental Medicine 2003 198 3 513 520 10.1084/jem.20030162 2-s2.0-0042123694 12900525 

  36. 36 Coban C. Ishii K. J. Kawai T. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin The Journal of Experimental Medicine 2005 201 1 19 25 10.1084/jem.20041836 2-s2.0-19944430901 15630134 

  37. 37 Coban C. Igari Y. Yagi M. Immunogenicity of whole-parasite vaccines against plasmodium falciparum involves malarial hemozoin and host TLR9 Cell Host & Microbe 2010 7 1 50 61 10.1016/j.chom.2009.12.003 2-s2.0-74049121298 20114028 

  38. 38 Yang Z. Kong B. Mosser D. M. Zhang X. TLRs, macrophages, and NK cells: our understandings of their functions in uterus and ovary International Immunopharmacology 2011 11 10 1442 1450 10.1016/j.intimp.2011.04.024 2-s2.0-80053290721 21586343 

  39. 39 Kiessling R. Klein E. Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype European Journal of Immunology 1975 5 2 112 117 10.1002/eji.1830050208 2-s2.0-0016762220 1234049 

  40. 40 Herberman R. B. Nunn M. E. Holden H. T. Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells International journal of cancer 1975 16 2 230 239 10.1002/ijc.2910160205 2-s2.0-0016746934 1080480 

  41. 41 Cerwenka A. Lanier L. L. Natural killer cells, viruses and cancer Nature Reviews Immunology 2001 1 1 41 49 10.1038/35095564 2-s2.0-0035496603 11905813 

  42. 42 Della Chiesa M. Marcenaro E. Sivori S. Carlomagno S. Pesce S. Moretta A. Human NK cell response to pathogens Seminars in Immunology 2014 26 2 152 160 10.1016/j.smim.2014.02.001 2-s2.0-84897958374 24582551 

  43. 43 Bar E. Whitney P. G. Moor K. e Sousa C. R. LeibundGut-Landmann S. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells Immunity 2014 40 1, article S1074761313005529 117 127 10.1016/j.immuni.2013.12.002 2-s2.0-84892479849 24412614 

  44. 44 Chalifour A. Jeannin P. Gauchat J. F. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production Blood 2004 104 6 1778 1783 10.1182/blood-2003-08-2820 2-s2.0-4444340990 15166032 

  45. 45 Lauzon N. M. Mian F. MacKenzie R. Ashkar A. A. The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity Cellular Immunology 2006 241 2 102 112 10.1016/j.cellimm.2006.08.004 2-s2.0-33750470437 17049504 

  46. 46 Takeda K. Kaisho T. Akira S. Toll-like receptors Annual Review of Immunology 2003 21 335 376 10.1146/annurev.immunol.21.120601.141126 2-s2.0-0012929728 12524386 

  47. 47 Dunne A. O'Neill L. A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense Science Signaling 2003 2003 171 p. re3 10.1126/stke.2003.171.re3 

  48. 48 Muzio M. Ni J. Feng P. Dixit V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling Science 1997 278 5343 1612 1615 10.1126/science.278.5343.1612 2-s2.0-0030694108 9374458 

  49. 49 Wesche H. Henzel W. J. Shillinglaw W. Li S. Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex Immunity 1997 7 6 837 847 10.1016/s1074-7613(00)80402-1 2-s2.0-0031423761 9430229 

  50. 50 Burns K. Martinon F. Esslinger C. MyD88, an adapter protein involved in interleukin-1 signaling The Journal of Biological Chemistry 1998 273 20 12203 12209 10.1074/jbc.273.20.12203 2-s2.0-0032524335 9575168 

  51. 51 Horng T. Barton G. M. Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway Nature Immunology 2001 2 9 835 841 10.1038/ni0901-835 2-s2.0-0035555301 11526399 

  52. 52 Fitzgerald K. A. Palsson-McDermott E. M. Bowie A. G. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction Nature 2001 413 6851 78 83 10.1038/35092578 2-s2.0-0035817925 11544529 

  53. 53 Yamamoto M. Sato S. Mori K. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN- β promoter in the Toll-like receptor signaling Journal of Immunology 2002 169 12 6668 6672 10.4049/jimmunol.169.12.6668 

  54. 54 Oshiumi H. Matsumoto M. Funami K. Akazawa T. Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction Nature Immunology 2003 4 2 161 167 10.1038/ni886 2-s2.0-0037320451 12539043 

  55. 55 Yamamoto M. Sato S. Hemmi H. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway Nature Immunology 2003 4 11 1144 1150 10.1038/ni986 2-s2.0-0242624622 14556004 

  56. 56 Fitzgerald K. A. Rowe D. C. Barnes B. J. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF The Journal of Experimental Medicine 2003 198 7 1043 1055 10.1084/jem.20031023 2-s2.0-0141959224 14517278 

  57. 57 Janssens S. Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members Molecular Cell 2003 11 2 293 302 10.1016/s1097-2765(03)00053-4 2-s2.0-0037292275 12620219 

  58. 58 Marcenaro E. Ferranti B. Falco M. Moretta L. Moretta A. Human NK cells directly recognize Mycobacterium bovis via TLR2 and acquire the ability to kill monocyte-derived DC International Immunology 2008 20 9 1155 1167 10.1093/intimm/dxn073 2-s2.0-53749087426 18596023 

  59. 59 Lindgren A. Pavlovic V. Flach C. F. Sjoling A. Lundin S. Interferon-gamma secretion is induced in IL-12 stimulated human NK cells by recognition of helicobacter pylori or TLR2 ligands Innate Immunity 2011 17 2 191 203 10.1177/1753425909357970 2-s2.0-79953697690 20130107 

  60. 60 Azuma M. Sawahata R. Akao Y. The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation PLoS One 2010 5 9, article e12550 10.1371/journal.pone.0012550 2-s2.0-77958565502 

  61. 61 Pisegna S. Pirozzi G. Piccoli M. Frati L. Santoni A. Palmieri G. p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells Blood 2004 104 13 4157 4164 10.1182/blood-2004-05-1860 2-s2.0-10244270620 15315972 

  62. 62 Girart M. V. Fuertes M. B. Domaica C. I. Rossi L. E. Zwirner N. W. Engagement of TLR3, TLR7, and NKG2D regulate IFN-gamma secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12 Journal of Immunology 2007 179 6 3472 3479 10.4049/jimmunol.179.6.3472 17804388 

  63. 63 Sivori S. Falco M. Della Chiesa M. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells Proceedings of the National Academy of Sciences 2004 101 27 10116 10121 10.1073/pnas.0403744101 2-s2.0-3042711969 15218108 

  64. 64 Sawaki J. Tsutsui H. Hayashi N. Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways International Immunology 2007 19 3 311 320 10.1093/intimm/dxl148 2-s2.0-33847388462 17289654 

  65. 65 Hornung V. Rothenfusser S. Britsch S. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides Journal of Immunology 2002 168 9 4531 4537 10.4049/jimmunol.168.9.4531 2-s2.0-0036570169 11970999 

  66. 66 Elkins K. L. Colombini S. M. Krieg A. M. De Pascalis R. NK cells activated in vivo by bacterial DNA control the intracellular growth of Francisella tularensis LVS Microbes and Infection 2009 11 1 49 56 10.1016/j.micinf.2008.10.005 2-s2.0-58349098099 18992838 

  67. 67 Marcenaro E. Carlomagno S. Pesce S. Moretta A. Sivori S. Bridging innate NK cell functions with adaptive immunity Advances in Experimental Medicine and Biology 2011 780 45 55 10.1007/978-1-4419-5632-3_5 2-s2.0-80053585264 21842364 

  68. 68 Marcenaro E. Della Chiesa M. Bellora F. IL-12 or IL-4 prime human NK cells to mediate functionally divergent interactions with dendritic cells or tumors Journal of Immunology 2005 174 7 3992 3998 10.4049/jimmunol.174.7.3992 2-s2.0-15444363620 15778356 

  69. 69 Schmidt S. Tramsen L. Rais B. Ullrich E. Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases-current status and future perspectives Oncotarget 2018 9 29 20891 20907 10.18632/oncotarget.25058 2-s2.0-85045525161 29755697 

  70. 70 Hudis C. A. Trastuzumab--mechanism of action and use in clinical practice The New England Journal of Medicine 2007 357 1 39 51 10.1056/NEJMra043186 2-s2.0-34347395733 17611206 

  71. 71 Baselga J. Perez E. A. Pienkowski T. Bell R. Adjuvant trastuzumab: a milestone in the treatment of HER-2-positive early breast cancer The oncologist 2006 11 Supplement 1 4 12 10.1634/theoncologist.11-90001-4 2-s2.0-33846064604 16971734 

  72. 72 Diefenbach A. Raulet D. H. The innate immune response to tumors and its role in the induction of T-cell immunity Immunological Reviews 2002 188 9 21 10.1034/j.1600-065x.2002.18802.x 2-s2.0-0036812626 12445277 

  73. 73 Kaifu T. Escaliere B. Gastinel L. N. Vivier E. Baratin M. B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors Cellular and molecular life sciences 2011 68 21 3531 3539 10.1007/s00018-011-0802-7 2-s2.0-80054729324 21877119 

  74. 74 Lu H. Yang Y. Gad E. TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted monoclonal antibody therapy Clinical cancer research 2011 17 21 6742 6753 10.1158/1078-0432.CCR-11-1142 2-s2.0-80455144500 21918170 

  75. 75 Matsumoto M. Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C) Advanced Drug Delivery Reviews 2008 60 7 805 812 10.1016/j.addr.2007.11.005 2-s2.0-41349102954 18262679 

  76. 76 Levy H. B. Law L. W. Rabson A. S. Inhibition of tumor growth by polyinosinic-polycytidylic acid Proceedings of the National Academy of Sciences 1969 62 2 357 361 10.1073/pnas.62.2.357 2-s2.0-0014473457 4894326 

  77. 77 Forte G. Rega A. Morello S. Polyinosinic-polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer Journal of Immunology 2012 188 11 5357 5364 10.4049/jimmunol.1103811 2-s2.0-84862059630 22516955 

  78. 78 Sharma S. Zhu L. Davoodi M. TLR3 agonists and proinflammatory antitumor activities Expert Opinion on Therapeutic Targets 2013 17 5 481 483 10.1517/14728222.2013.781585 2-s2.0-84876238309 23506058 

  79. 79 Guillerey C. Chow M. T. Miles K. Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis Oncoimmunology 2015 4 9, article e1027468 10.1080/2162402X.2015.1027468 2-s2.0-84944457504 26405596 

  80. 80 Hemmi H. Kaisho T. Takeuchi O. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway Nature Immunology 2002 3 2 196 200 10.1038/ni758 2-s2.0-0036008014 11812998 

  81. 81 Bourquin C. Schmidt L. Lanz A. L. Immunostimulatory RNA oligonucleotides induce an effective antitumoral NK cell response through the TLR7 Journal of Immunology 2009 183 10 6078 6086 10.4049/jimmunol.0901594 2-s2.0-77954229780 19890064 

  82. 82 Gilliet M. Cao W. Liu Y. J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases Nature Reviews Immunology 2008 8 8 594 606 10.1038/nri2358 2-s2.0-48749085127 18641647 

  83. 83 Wiedemann G. M. Jacobi S. J. Chaloupka M. A novel TLR7 agonist reverses NK cell anergy and cures RMA-S lymphoma-bearing mice OncoImmunology 2016 5 7, article e1189051 10.1080/2162402X.2016.1189051 2-s2.0-84978162046 27622045 

  84. 84 Coiffier B. Lepage E. Briere J. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma The New England Journal of Medicine 2002 346 4 235 242 10.1056/NEJMoa011795 2-s2.0-0037165261 11807147 

  85. 85 Hallek M. Fischer K. Fingerle-Rowson G. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial The Lancet 2010 376 9747 1164 1174 10.1016/S0140-6736(10)61381-5 2-s2.0-77957664665 

  86. 86 Cheadle E. J. Lipowska-Bhalla G. Dovedi S. J. A TLR7 agonist enhances the antitumor efficacy of obinutuzumab in murine lymphoma models via NK cells and CD4 T cells Leukemia 2017 31 7 1611 1621 10.1038/leu.2016.352 2-s2.0-85007559016 27890931 

  87. 87 Lu H. Dietsch G. N. Matthews M. A. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC Clinical cancer research 2012 18 2 499 509 10.1158/1078-0432.CCR-11-1625 2-s2.0-84862907802 22128302 

  88. 88 Dietsch G. N. Lu H. Yang Y. Coordinated activation of Toll-like receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity PloS one 2016 11 2, article e0148764 10.1371/journal.pone.0148764 2-s2.0-84960459109 26928328 

  89. 89 Alter G. Heckerman D. Schneidewind A. HIV-1 adaptation to NK-cell-mediated immune pressure Nature 2011 476 7358 96 100 10.1038/nature10237 2-s2.0-79961138654 21814282 

  90. 90 Sips M. Sciaranghella G. Diefenbach T. Altered distribution of mucosal NK cells during HIV infection Mucosal Immunology 2012 5 1 30 40 10.1038/mi.2011.40 2-s2.0-83655211619 21993602 

  91. 91 Schmidt M. Hagner N. Marco A. Konig-Merediz S. A. Schroff M. Wittig B. Design and structural requirements of the potent and safe TLR-9 agonistic immunomodulator MGN1703 Nucleic Acid Therapeutics 2015 25 3 130 140 10.1089/nat.2015.0533 2-s2.0-84926128648 25826686 

  92. 92 Offersen R. Nissen S. K. Rasmussen T. A. A novel Toll-like receptor 9 agonist, MGN1703, enhances HIV-1 transcription and NK cell-mediated inhibition of HIV-1-infected autologous CD4+ T cells Journal of Virology 2016 90 9 4441 4453 10.1128/JVI.00222-16 2-s2.0-84964938403 26889036 

  93. 93 Souza-Fonseca-Guimaraes F. Parlato M. Philippart F. Misset B. Cavaillon J. M. Adib-Conquy M. Toll-like receptors expression and interferon- γ production by NK cells in human sepsis Critical care 2012 16 5 p. R206 10.1186/cc11838 2-s2.0-84867740346 23098236 

  94. 94 Varma T. K. Lin C. Y. Toliver-Kinsky T. E. Sherwood E. R. Endotoxin-induced gamma interferon production: contributing cell types and key regulatory factors Clinical and Diagnostic Laboratory Immunology 2002 9 3 530 543 10.1128/cdli.9.3.530-543.2002 2-s2.0-0036100584 11986256 

  95. 95 Guo Y. Patil N. K. Luan L. Bohannon J. K. Sherwood E. R. The biology of natural killer cells during sepsis Immunology 2018 153 2 190 202 10.1111/imm.12854 2-s2.0-85034222105 29064085 

  96. 96 Fernandez N. C. Lozier A. Flament C. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo Nature Medicine 1999 5 4 405 411 10.1038/7403 2-s2.0-0032903599 10202929 

  97. 97 Yu Y. Hagihara M. Ando K. Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells Journal of Immunology 2001 166 3 1590 1600 10.4049/jimmunol.166.3.1590 2-s2.0-0035253358 11160200 

  98. 98 Ferlazzo G. Pack M. Thomas D. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs Proceedings of the National Academy of Sciences 2004 101 47 16606 16611 10.1073/pnas.0407522101 2-s2.0-9344263448 15536127 

  99. 99 Anguille S. Van Acker H. H. Van den Bergh J. Interleukin-15 dendritic cells harness NK cell cytotoxic effector function in a contact- and IL-15-dependent manner PLoS One 2015 10 5, article e0123340 10.1371/journal.pone.0123340 2-s2.0-84929121276 25951230 

  100. 100 Semino C. Angelini G. Poggi A. Rubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1 Blood 2005 106 2 609 616 10.1182/blood-2004-10-3906 2-s2.0-20644444013 15802534 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로