$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Genome-wide association and epistatic interactions of flowering time in soybean cultivar 원문보기

PloS one, v.15 no.1, 2020년, pp.e0228114 -   

Kim, Kyoung Hyoun (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Kim, Jae-Yoon (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Lim, Won-Jun (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Jeong, Seongmun (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Lee, Ho-Yeon (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Cho, Youngbum (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Moon, Jung-Kyung (National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea) ,  Kim, Namshin (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Genome-wide association studies (GWAS) have enabled the discovery of candidate markers that play significant roles in various complex traits in plants. Recently, with increased interest in the search for candidate markers, studies on epistatic interactions between single nucleotide polymorphism (SNP...

참고문헌 (109)

  1. 1 Contreras-Soto RI , Mora F , de Oliveira MAR , Higashi W , Scapim CA , Schuster I . A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis . PLoS One . 2017 ; 12 ( 2 ): e0171105 10.1371/journal.pone.0171105 28152092 

  2. 2 Chen H , Xie W , He H , Yu H , Chen W , Li J , et al A high-density SNP genotyping array for rice biology and molecular breeding . Mol Plant . 2014 ; 7 ( 3 ): 541 ? 53 . 10.1093/mp/sst135 24121292 

  3. 3 Hu X , Ren J , Ren X , Huang S , Sabiel SA , Luo M , et al Association of agronomic traits with SNP markers in durum wheat (Triticum turgidum L. durum (Desf.)) . PLoS One . 2015 ; 10 ( 6 ): e0130854 10.1371/journal.pone.0130854 26110423 

  4. 4 Navarro JAR , Willcox M , Burgueno J , Romay C , Swarts K , Trachsel S , et al A study of allelic diversity underlying flowering-time adaptation in maize landraces . Nat Genet . 2017 ; 49 ( 3 ): 476 10.1038/ng.3784 28166212 

  5. 5 Nascimento M , Nascimento ACC , Silva FFe , Barili LD , do Vale NM , Carneiro JE , et al Quantile regression for genome-wide association study of flowering time-related traits in common bean . PLoS One . 2018 ; 13 ( 1 ): e0190303 10.1371/journal.pone.0190303 29300788 

  6. 6 Sales E , Viruel J , Domingo C , Marques L . Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties . PLoS One . 2017 ; 12 ( 8 ): e0183416 10.1371/journal.pone.0183416 28817683 

  7. 7 Fan Y , Zhou G , Shabala S , Chen Z-H , Cai S , Li C , et al Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.) . Front Plant Sci . 2016 ; 7 : 946 10.3389/fpls.2016.00946 27446173 

  8. 8 Patil G , Do T , Vuong TD , Valliyodan B , Lee J-D , Chaudhary J , et al Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean . Sci Rep . 2016 ; 6 : 19199 10.1038/srep19199 26781337 

  9. 9 Thabet SG , Moursi YS , Karam MA , Graner A , Alqudah AM . Genetic basis of drought tolerance during seed germination in barley . PLoS One . 2018 ; 13 ( 11 ): e0206682 10.1371/journal.pone.0206682 30388157 

  10. 10 Kim S-M , Reinke RF . A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population . PLoS One . 2019 ; 14 ( 2 ): e0211775 10.1371/journal.pone.0211775 30753229 

  11. 11 Chen G , Wang X , Hao J , Yan J , Ding J . Genome-wide association implicates candidate genes conferring resistance to maize rough dwarf disease in maize . PLoS One . 2015 ; 10 ( 11 ): e0142001 10.1371/journal.pone.0142001 26529245 

  12. 12 Begum H , Spindel JE , Lalusin A , Borromeo T , Gregorio G , Hernandez J , et al Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa) . PLoS One . 2015 ; 10 ( 3 ): e0119873 10.1371/journal.pone.0119873 25785447 

  13. 13 Zhang J , Song Q , Cregan PB , Nelson RL , Wang X , Wu J , et al Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm . BMC Genomics . 2015 ; 16 ( 1 ): 217 10.1186/s12864-015-1441-4 25887991 

  14. 14 Hoang GT , Gantet P , Nguyen KH , Phung NTP , Ha LT , Nguyen TT , et al Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel . PLoS One . 2019 ; 14 ( 7 ). 10.1371/journal.pone.0219274 31283792 

  15. 15 Lu S , Zhang M , Zhang Z , Wang Z , Wu N , Song Y , et al Screening and verification of genes associated with leaf angle and leaf orientation value in inbred maize lines . PLoS One . 2018 ; 13 ( 12 ): e0208386 10.1371/journal.pone.0208386 30532152 

  16. 16 Zhao X , Dong H , Chang H , Zhao J , Teng W , Qiu L , et al Genome wide association mapping and candidate gene analysis for hundred seed weight in soybean [Glycine max (L.) Merrill] . BMC Genomics . 2019 ; 20 ( 1 ): 648 10.1186/s12864-019-6009-2 31412769 

  17. 17 Sehgal D , Mondal S , Guzman C , Barrios GG , Franco C , Singh RP , et al Validation of candidate gene-based markers and identification of novel loci for thousand-grain weight in spring bread wheat . Front Plant Sci . 2019 ; 10 : 1189 10.3389/fpls.2019.01189 31616457 

  18. 18 Battenfield SD , Sheridan JL , Silva LD , Miclaus KJ , Dreisigacker S , Wolfinger RD , et al Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program . PLoS One . 2018 ; 13 ( 11 ): e0204757 10.1371/journal.pone.0204757 30496187 

  19. 19 Wang B , Li J . Understanding the molecular bases of agronomic trait improvement in rice . Plant Cell . 2019 ; 31 ( 7 ): 1416 ? 7 . 10.1105/tpc.19.00343 31068452 

  20. 20 Langer SM , Longin CFH , Wurschum T . Flowering time control in European winter wheat . Front Plant Sci . 2014 ; 5 : 537 10.3389/fpls.2014.00537 25346745 

  21. 21 Mazaheri M , Heckwolf M , Vaillancourt B , Gage JL , Burdo B , Heckwolf S , et al Genome-wide association analysis of stalk biomass and anatomical traits in maize . BMC Plant Biol . 2019 ; 19 ( 1 ): 45 10.1186/s12870-019-1653-x 30704393 

  22. 22 Alqudah AM , Sharma R , Pasam RK , Graner A , Kilian B , Schnurbusch T . Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley . PLoS One . 2014 ; 9 ( 11 ): e113120 10.1371/journal.pone.0113120 25420105 

  23. 23 Huang X , Zhao Y , Li C , Wang A , Zhao Q , Li W , et al Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm . Nat Genet . 2012 ; 44 ( 1 ): 32 ? 9 . 10.1038/ng.1018 22138690 

  24. 24 Ahsan A , Monir M , Meng X , Rahaman M , Chen H , Chen M . Identification of epistasis loci underlying rice flowering time by controlling population stratification and polygenic effect . DNA Res . 2018 ; 26 ( 2 ): 119 ? 30 . 10.1093/dnares/dsy043 30590457 

  25. 25 Koo CL , Liew MJ , Mohamad MS , Salleh AHM , Deris S , Ibrahim Z , et al Software for detecting gene-gene interactions in genome wide association studies . Biotechnol Bioproc E . 2015 ; 20 ( 4 ): 662 ? 76 . 10.1007/s12257-015-0064-6 

  26. 26 Moellers TC , Singh A , Zhang J , Brungardt J , Kabbage M , Mueller DS , et al Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments . Sci Rep . 2017 ; 7 ( 1 ): 3554 10.1038/s41598-017-03695-9 28620159 

  27. 27 Zhang J , Singh A , Mueller DS , Singh AK . Genome-wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean . Plant J . 2015 ; 84 ( 6 ): 1124 ? 36 . 10.1111/tpj.13069 26561232 

  28. 28 Mamidi S , Lee RK , Goos JR , McClean PE . Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max) . PLoS One . 2014 ; 9 ( 9 ): e107469 10.1371/journal.pone.0107469 25225893 

  29. 29 Assefa T , Otyama PI , Brown AV , Kalberer SR , Kulkarni RS , Cannon SB . Genome-wide associations and epistatic interactions for internode number, plant height, seed weight and seed yield in soybean . BMC Genomics . 2019 ; 20 ( 1 ): 527 10.1186/s12864-019-5907-7 31242867 

  30. 30 He T , Hill CB , Angessa TT , Zhang X-Q , Chen K , Moody D , et al Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection . J Exp Bot . 2019 ; 70 ( 20 ): 5603 ? 16 . 10.1093/jxb/erz332 31504706 

  31. 31 Bernard R . Two major genes for time of flowering and maturity in soybeans . Crop Sci . 1971 ; 11 ( 2 ): 242 ? 4 . 10.2135/cropsci1971.0011183X001100020022x 

  32. 32 Buzzell R . Inheritance of a soybean flowering response to fluorescent-daylength conditions . Can J Genet Cytol . 1971 ; 13 ( 4 ): 703 ? 7 . 10.1139/g71-100 

  33. 33 Buzzell R , Voldeng H . Inheritance of insensitivity to long daylength . Soyb Genet Newsl . 1980 ; 7 ( 1 ): 13 10.1093/jhered/esp113 

  34. 34 Saindon G , Voldeng H , Beversdorf W , Buzzell R . Genetic control of long daylength response in soybean . Crop Sci . 1989 ; 29 ( 6 ): 1436 ? 9 . 10.2135/cropsci1989.0011183X002900060021x 

  35. 35 McBlain B , Bernard R . A new gene affecting the time of flowering and maturity in soybeans . J Hered . 1987 ; 78 ( 3 ): 160 ? 2 . 10.1093/oxfordjournals.jhered.a110349 

  36. 36 Bonato ER , Vello NA . E6, a dominant gene conditioning early flowering and maturity in soybeans . Genet Mol Biol . 1999 ; 22 ( 2 ): 229 ? 32 . 10.1590/S1415-47571999000200016 

  37. 37 Cober ER , Voldeng HD . A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T . Crop Sci . 2001 ; 41 ( 3 ): 698 ? 701 . 10.2135/cropsci2001.413698x 

  38. 38 Cober ER , Molnar SJ , Charette M , Voldeng HD . A new locus for early maturity in soybean . Crop Sci . 2010 ; 50 ( 2 ): 524 ? 7 . 10.2135/cropsci2009.04.0174 

  39. 39 Kong F , Nan H , Cao D , Li Y , Wu F , Wang J , et al A new dominant gene E9 conditions early flowering and maturity in soybean . Crop Sci . 2014 ; 54 ( 6 ): 2529 ? 35 . 10.2135/cropsci2014.03.0228 

  40. 40 Zhao C , Takeshima R , Zhu J , Xu M , Sato M , Watanabe S , et al A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog . BMC Plant Biol . 2016 ; 16 ( 1 ): 20 10.1186/s12870-016-0704-9 26786479 

  41. 41 Samanfar B , Molnar SJ , Charette M , Schoenrock A , Dehne F , Golshani A , et al Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean . Theor Appl Genet . 2017 ; 130 ( 2 ): 377 ? 90 . 10.1007/s00122-016-2819-7 27832313 

  42. 42 Ray JD , Hinson K , Mankono J , Malo MF . Genetic control of a long-juvenile trait in soybean . Crop Sci . 1995 ; 35 ( 4 ): 1001 ? 6 . 10.2135/cropsci1995.0011183X003500040012x 

  43. 43 Liu B , Watanabe S , Uchiyama T , Kong F , Kanazawa A , Xia Z , et al The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1 . Plant Physiol . 2010 ; 153 ( 1 ): 198 ? 210 . 10.1104/pp.109.150607 20219831 

  44. 44 Tian Z , Wang X , Lee R , Li Y , Specht JE , Nelson RL , et al Artificial selection for determinate growth habit in soybean . Proc Natl Acad Sci U S A . 2010 ; 107 ( 19 ): 8563 ? 8 . 10.1073/pnas.1000088107 20421496 

  45. 45 Lee YG , Jeong N , Kim JH , Lee K , Kim KH , Pirani A , et al Development, validation and genetic analysis of a large soybean SNP genotyping array . Plant J . 2015 ; 81 ( 4 ): 625 ? 36 . 10.1111/tpj.12755 25641104 

  46. 46 Browning BL , Zhou Y , Browning SR . A one-penny imputed genome from next-generation reference panels . Am J Hum Genet . 2018 ; 103 ( 3 ): 338 ? 48 . 10.1016/j.ajhg.2018.07.015 30100085 

  47. 47 Jeong S-C , Moon J-K , Park S-K , Kim M-S , Lee K , Lee SR , et al Genetic diversity patterns and domestication origin of soybean . Theor Appl Genet . 2019 : 132 ( 4 ): 1179 ? 93 . 10.1007/s00122-018-3271-7 30588539 

  48. 48 Purcell S , Neale B , Todd-Brown K , Thomas L , Ferreira MAR , Bender D , et al PLINK: a tool set for whole-genome association and population-based linkage analyses . Am J Hum Genet . 2007 ; 81 ( 3 ): 559 ? 75 . 10.1086/519795 17701901 

  49. 49 Gascuel O . BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data . Mol Biol Evol . 1997 ; 14 ( 7 ): 685 ? 95 . 10.1093/oxfordjournals.molbev.a025808 9254330 

  50. 50 Raj A , Stephens M , Pritchard JK . fastSTRUCTURE: variational inference of population structure in large SNP data sets . Genetics . 2014 ; 197 ( 2 ): 573 ? 89 . 10.1534/genetics.114.164350 24700103 

  51. 51 Kimura M . A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences . J Mol Evol . 1980 ; 16 ( 2 ): 111 ? 20 . 10.1007/bf01731581 7463489 

  52. 52 Zhang C , Dong S-S , Xu J-Y , He W-M , Yang T-L . PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files . Bioinformatics . 2019 ; 35 ( 10 ): 1786 ? 8 10.1093/bioinformatics/bty875 30321304 

  53. 53 Danecek P , Auton A , Abecasis G , Albers CA , Banks E , DePristo MA , et al The variant call format and VCFtools . Bioinformatics . 2011 ; 27 ( 15 ): 2156 ? 8 . 10.1093/bioinformatics/btr330 21653522 

  54. 54 Lipka AE , Tian F , Wang Q , Peiffer J , Li M , Bradbury PJ , et al GAPIT: genome association and prediction integrated tool . Bioinformatics . 2012 ; 28 ( 18 ): 2397 ? 9 . 10.1093/bioinformatics/bts444 22796960 

  55. 55 Cingolani P , Platts A , Wang LL , Coon M , Nguyen T , Wang L , et al A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 . Fly . 2012 ; 6 ( 2 ): 80 ? 92 . 10.4161/fly.19695 22728672 

  56. 56 Jung C-H , Wong CE , Singh MB , Bhalla PL . Comparative genomic analysis of soybean flowering genes . PLoS One . 2012 ; 7 ( 6 ): e38250 10.1371/journal.pone.0038250 22679494 

  57. 57 Tsubokura Y , Watanabe S , Xia Z , Kanamori H , Yamagata H , Kaga A , et al Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean . Ann Bot . 2014 ; 113 ( 3 ): 429 ? 41 . 10.1093/aob/mct269 24284817 

  58. 58 Nikitin A , Egorov S , Daraselia N , Mazo I . Pathway studio―the analysis and navigation of molecular networks . Bioinformatics . 2003 ; 19 ( 16 ): 2155 ? 7 . 10.1093/bioinformatics/btg290 14594725 

  59. 59 Watanabe S , Harada K , Abe J . Genetic and molecular bases of photoperiod responses of flowering in soybean . Breed Sci . 2012 ; 61 ( 5 ): 531 ? 43 . 10.1270/jsbbs.61.531 23136492 

  60. 60 Camacho C , Coulouris G , Avagyan V , Ma N , Papadopoulos J , Bealer K , et al BLAST+: architecture and applications . BMC Bioinformatics . 2009 ; 10 ( 1 ): 421 10.1186/1471-2105-10-421 20003500 

  61. 61 Wang J , Joshi T , Valliyodan B , Shi H , Liang Y , Nguyen HT , et al A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies . BMC Genomics . 2015 ; 16 ( 1 ): 1011 10.1186/s12864-015-2217-6 26607428 

  62. 62 Zhang J , Hou T , Wang W , Liu JS . Detecting and understanding combinatorial mutation patterns responsible for HIV drug resistance . Proc Natl Acad Sci U S A . 2010 ; 107 ( 4 ): 1321 ? 6 . 10.1073/pnas.0907304107 20080674 

  63. 63 Stewart DW , Cober ER , Bernard RL . Modeling genetic effects on the photothermal response of soybean phenological development . Agron J . 2003 ; 95 ( 1 ): 65 ? 70 . 

  64. 64 Zhang X , Zhai H , Wang Y , Tian X , Zhang Y , Wu H , et al Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes . Sci Rep . 2016 ; 6 ( 1 ): 29548 10.1038/srep29548 27405888 

  65. 65 Watanabe S , Hideshima R , Xia Z , Tsubokura Y , Sato S , Nakamoto Y , et al Map-based cloning of the gene associated with the soybean maturity locus E3 . Genetics . 2009 ; 182 ( 4 ): 1251 ? 62 . 10.1534/genetics.108.098772 19474204 

  66. 66 Watanabe S , Xia Z , Hideshima R , Tsubokura Y , Sato S , Yamanaka N , et al A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering . Genetics . 2011 ; 188 ( 2 ): 395 ? 407 . 10.1534/genetics.110.125062 21406680 

  67. 67 Liu B , Kanazawa A , Matsumura H , Takahashi R , Harada K , Abe J . Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene . Genetics . 2008 ; 180 ( 2 ): 995 ? 1007 . 10.1534/genetics.108.092742 18780733 

  68. 68 Lee S-J , Lee BH , Jung J-H , Park SK , Song JT , Kim JH . GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR specify meristematic cells of gynoecia and anthers . Plant Physiol . 2018 ; 176 ( 1 ): 717 ? 29 . 10.1104/pp.17.00960 29114079 

  69. 69 Preston JC , Hileman L . Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family . Front Plant Sci . 2013 ; 4 : 80 10.3389/fpls.2013.00080 23577017 

  70. 70 Xu D , Zhu D , Deng XW . The role of COP1 in repression of photoperiodic flowering . F1000Res . 2016 ; 5 10.12688/f1000research.7346.1 26949521 

  71. 71 Zeng X , Liu H , Du H , Wang S , Yang W , Chi Y , et al Soybean MADS-box gene GmAGL1 promotes flowering via the photoperiod pathway . BMC Genomics . 2018 ; 19 ( 1 ): 51 10.1186/s12864-017-4402-2 29338682 

  72. 72 Jaudal M , Zhang L , Che C , Putterill J . Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis . Front Genet . 2015 ; 6 : 50 10.3389/fgene.2015.00050 25745430 

  73. 73 Ren C , Zhang Z , Wang Y , Li S , Liang Z . Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.) . BMC Genomics . 2016 ; 17 ( 1 ): 605 10.1186/s12864-016-2989-3 27516172 

  74. 74 Sanchez R , Kim MY , Calonje M , Moon Y-H , Sung ZR . Temporal and spatial requirement of EMF1 activity for Arabidopsis vegetative and reproductive development . Mol Plant . 2009 ; 2 ( 4 ): 643 ? 53 . 10.1093/mp/ssp004 19825645 

  75. 75 Kim SY , Lee J , Eshed-Williams L , Zilberman D , Sung ZR . EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development . PLoS Genet . 2012 ; 8 ( 3 ): e1002512 10.1371/journal.pgen.1002512 22457632 

  76. 76 Song YH , Estrada DA , Johnson RS , Kim SK , Lee SY , MacCoss MJ , et al Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering . Proc Natl Acad Sci U S A . 2014 ; 111 ( 49 ): 17672 ? 7 . 10.1073/pnas.1415375111 25422419 

  77. 77 Seaton DD , Smith RW , Song YH , MacGregor DR , Stewart K , Steel G , et al Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature . Mol Syst Biol . 2015 ; 11 ( 1 ): 776 10.15252/msb.20145766 25600997 

  78. 78 Agliassa C , Narayana R , Bertea CM , Rodgers CT , Maffei ME . Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes . Bioelectromagnetics . 2018 ; 39 ( 5 ): 361 ? 74 . 10.1002/bem.22123 29709075 

  79. 79 Cai X , Ballif J , Endo S , Davis E , Liang M , Chen D , et al A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis . Plant Physiol . 2007 ; 145 ( 1 ): 98 ? 105 . 10.1104/pp.107.102079 17631525 

  80. 80 Capovilla G , Schmid M , Pose D . Control of flowering by ambient temperature . J Exp Bot . 2015 ; 66 ( 1 ): 59 ? 69 . 10.1093/jxb/eru416 25326628 

  81. 81 Kang H , Zhang C , An Z , Shen W-H , Zhu Y . AtINO80 and AtARP5 physically interact and play common as well as distinct roles in regulating plant growth and development . New Phytol . 2019 ; 223 ( 1 ): 336 ? 53 . 10.1111/nph.15780 30843208 

  82. 82 Jiao Y , Yang H , Ma L , Sun N , Yu H , Liu T , et al A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development . Plant Physiol . 2003 ; 133 ( 4 ): 1480 ? 93 . 10.1104/pp.103.029439 14605227 

  83. 83 Helliwell CA , Robertson M , Finnegan EJ , Buzas DM , Dennis ES . Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts . PLoS One . 2011 ; 6 ( 6 ): e21513 10.1371/journal.pone.0021513 21713009 

  84. 84 Hohenstatt ML , Mikulski P , Komarynets O , Klose C , Kycia I , Jeltsch A , et al PWWP-DOMAIN INTERACTOR OF POLYCOMBS1 interacts with Polycomb-group proteins and histones and regulates Arabidopsis flowering and development . Plant Cell . 2018 ; 30 ( 1 ): 117 ? 33 . 10.1105/tpc.17.00117 29330200 

  85. 85 Berardini TZ , Reiser L , Li D , Mezheritsky Y , Muller R , Strait E , et al The Arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome . Genesis . 2015 ; 53 ( 8 ): 474 ? 85 . 10.1002/dvg.22877 26201819 

  86. 86 Cheng J-Z , Zhou Y-P , Lv T-X , Xie C-P , Tian C-E . Research progress on the autonomous flowering time pathway in Arabidopsis . Physiol Mol Biol Plants . 2017 ; 23 ( 3 ): 477 ? 85 . 10.1007/s12298-017-0458-3 28878488 

  87. 87 Liu Q , Wang Q , Deng W , Wang X , Piao M , Cai D , et al Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2 . Nat Commun . 2017 ; 8 ( 1 ): 15234 10.1038/ncomms15234 28492234 

  88. 88 Yu X , Liu H , Klejnot J , Lin C . The cryptochrome blue light receptors . Arabidopsis Book . 2010 ; 2010 ( 8 ): e0135 10.1199/tab.0135 21841916 

  89. 89 Kim MY , Kang YJ , Lee T , Lee S-H . Divergence of flowering-related genes in three legume species . Plant Genome . 2013 ; 6 ( 3 ). 10.3835/plantgenome2013.03.0008 

  90. 90 Amasino RM , Michaels SD . The timing of flowering . Plant Physiol . 2010 ; 154 ( 2 ): 516 ? 20 . 10.1104/pp.110.161653 20921176 

  91. 91 Boss PK , Bastow RM , Mylne JS , Dean C . Multiple pathways in the decision to flower: enabling, promoting, and resetting . Plant Cell . 2004 ; 16 ( suppl 1 ): S18 ? S31 . 10.1105/tpc.015958 15037730 

  92. 92 Xia Z , Watanabe S , Yamada T , Tsubokura Y , Nakashima H , Zhai H , et al Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering . Proc Natl Acad Sci U S A . 2012 ; 109 ( 32 ): E2155 ? E2164 . 10.1073/pnas.1117982109 22619331 

  93. 93 Liu W , Jiang B , Ma L , Zhang S , Zhai H , Xu X , et al Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation . New Phytol . 2018 ; 217 ( 3 ): 1335 ? 45 . 10.1111/nph.14884 29120038 

  94. 94 Jiang B , Nan H , Gao Y , Tang L , Yue Y , Lu S , et al Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes . PLoS One . 2014 ; 9 ( 8 ): e106042 10.1371/journal.pone.0106042 25162675 

  95. 95 Zhai H , Lu S , Liang S , Wu H , Zhang X , Liu B , et al GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean . PLoS One . 2014 ; 9 ( 2 ): e89030 10.1371/journal.pone.0089030 24586488 

  96. 96 Xu M , Xu Z , Liu B , Kong F , Tsubokura Y , Watanabe S , et al Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean . BMC Plant Biol . 2013 ; 13 ( 1 ): 91 10.1186/1471-2229-13-91 23799885 

  97. 97 Tsubokura Y , Matsumura H , Xu M , Liu B , Nakashima H , Anai T , et al Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes . Agron J . 2013 ; 3 ( 1 ): 117 ? 34 . 10.3390/agronomy3010117 

  98. 98 Zhai H , Lu S , Wang Y , Chen X , Ren H , Yang J , et al Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars . PLoS One . 2014 ; 9 ( 5 ): e97636 10.1371/journal.pone.0097636 24830458 

  99. 99 Li Z , Nelson RL . Genetic diversity among soybean accessions from three countries measured by RAPDs . Crop Sci . 2001 ; 41 ( 4 ): 1337 ? 47 . 10.2135/cropsci2001.4141337x 

  100. 100 Lee G-A , Choi Y-M , Yi J-Y , Chung J-W , Lee M-C , Ma K-H , et al Genetic diversity and population structure of Korean soybean collection using 75 microsatellite markers . Korean J Crop Sci . 2014 ; 59 ( 4 ): 492 ? 7 . 10.7740/kjcs.2014.59.4.492 

  101. 101 Sedivy EJ , Wu F , Hanzawa Y . Soybean domestication: the origin, genetic architecture and molecular bases . New Phytol . 2017 ; 214 ( 2 ): 539 ? 53 . 10.1111/nph.14418 28134435 

  102. 102 Ritchie MD , Steen KV . The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation . Ann Transl Med . 2018 ; 6 ( 8 ): 157 10.21037/atm.2018.04.05 29862246 

  103. 103 Sun X , Lu Q , Mukherjee S , Crane PK , Elston R , Ritchie MD . Analysis pipeline for the epistasis search―statistical versus biological filtering . Front Genet . 2014 ; 5 : 106 10.3389/fgene.2014.00106 24817878 

  104. 104 Niel C , Sinoquet C , Dina C , Rocheleau G . A survey about methods dedicated to epistasis detection . Front Genet . 2015 ; 6 : 285 10.3389/fgene.2015.00285 26442103 

  105. 105 Yi N . Statistical analysis of genetic interactions . Genet Res . 2010 ; 92 ( 5?6 ): 443 ? 59 . 10.1017/S0016672310000595 21429274 

  106. 106 Bernier G , Perilleux C . A physiological overview of the genetics of flowering time control . Plant Biotechnol J . 2005 ; 3 ( 1 ): 3 ? 16 . 10.1111/j.1467-7652.2004.00114.x 17168895 

  107. 107 Rouse DT , Sheldon CC , Bagnall DJ , Peacock WJ , Dennis ES . FLC, a repressor of flowering, is regulated by genes in different inductive pathways . Plant J . 2002 ; 29 ( 2 ): 183 ? 91 . 10.1046/j.0960-7412.2001.01210.x 11851919 

  108. 108 Henderson IR , Dean C . Control of Arabidopsis flowering: the chill before the bloom . Development . 2004 ; 131 ( 16 ): 3829 ? 38 . 10.1242/dev.01294 15289433 

  109. 109 Corbesier L , Coupland G . The quest for florigen: a review of recent progress . J Exp Bot . 2006 ; 57 ( 13 ): 3395 ? 403 . 17030536 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로