최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of bifurcation and chaos in applied sciences and engineering, v.10 no.12, 2000년, pp.2791 - 2805
LEGA, ELENA (CNRS-IDEFI, 250 Rue A. Einstein, 06560 Valbonne, France) , PENNA, GABRIELLA DELLA (Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304 Nice cedex 4, France) , FROESCHLÉ, CLAUDE (Observatoire de Nice, Bv. de l'Observatoire, B.P. 4229, 06304 Nice cedex 4, France) , CELLETTI, ALESSANDRA (Dipartimento di Matematica Pura e Applicata, Universitá)
Many techniques have been developed for the measure of the largest Lyapunov exponent of experimental short data series. The main idea, underlying the most common algorithms, is to mimic the method of computation proposed by Benettin and Galgani [1979]. The aim of the present paper is to provide an ...
Bryant, Paul, Brown, Reggie, Abarbanel, Henry D. I.. Lyapunov exponents from observed time series. Physical review letters, vol.65, no.13, 1523-1526.
Chirikov, Boris V. A universal instability of many-dimensional oscillator systems. Physics reports, vol.52, no.5, 263-379.
Contopoulos, George, Galgani, Luigi, Giorgilli, Antonio. On the number of isolating integrals in Hamiltonian systems. Physical review. A, General physics, vol.18, no.3, 1183-1189.
Eckmann, J. -P., Kamphorst, S. Oliffson, Ruelle, D., Ciliberto, S.. Liapunov exponents from time series. Physical review. A, General physics, vol.34, no.6, 4971-4979.
Astron. Astrophys. Froeschle C. 15 9 1970
Astron. Astrophys. Froeschle C. 431 22 1973
Froeschl�, C., Scheidecker, J. -P.. On the disappearance of isolating integrals in dynamical systems with more than two degrees of freedom. Astrophysics and space science, vol.25, no.2, 373-386.
J. de Mec. Theor. et Appl., Numero special Froeschle C. 101 1984
Gao, Jianbo, Zheng, Zhemin. Local exponential divergence plot and optimal embedding of a chaotic time series. Physics letters: A, vol.181, no.2, 153-158.
Hénon, M.. A two-dimensional mapping with a strange attractor. Communications in mathematical physics, vol.50, no.1, 69-77.
Kantz, Holger. A robust method to estimate the maximal Lyapunov exponent of a time series. Physics letters: A, vol.185, no.1, 77-87.
Mosc. Math. Soc. Oseledec V. I. 197 19 1968
Packard, N. H., Crutchfield, J. P., Farmer, J. D., Shaw, R. S.. Geometry from a Time Series. Physical review letters, vol.45, no.9, 712-716.
Physica Rosenstein M. T. 117 65 1993
Sano, M., Sawada, Y.. Measurement of the Lyapunov Spectrum from a Chaotic Time Series. Physical review letters, vol.55, no.10, 1082-1085.
Sato, S., Sano, M., Sawada, Y.. Practical Methods of Measuring the Generalized Dimension and the Largest Lyapunov Exponent in High Dimensional Chaotic Systems. Progress of theoretical physics, vol.77, no.1, 1-5.
Sugihara, George, May, Robert M.. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, vol.344, no.6268, 734-741.
Wales, David J.. Calculating the rate of loss of information from chaotic time series by forecasting. Nature, vol.350, no.6318, 485-488.
Wayland, Richard, Bromley, David, Pickett, Douglas, Passamante, Anthony. Recognizing determinism in a time series. Physical review letters, vol.70, no.5, 580-582.
Physica Wolf A. 285 16 1985
Zeng, X., Eykholt, R., Pielke, R. A.. Estimating the Lyapunov-exponent spectrum from short time series of low precision. Physical review letters, vol.66, no.25, 3229-3232.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.