The sequences of eighty 5S rDNA clones were obtained by polymerase chain reaction (PCR) amplification of DNA from 12 accessions representing eight species of Kengyilia. Orthologous sequences were grouped into five unit classes: long P1, long S1, long {Y1, short P1, and short S1. Both the long P1 an...
The sequences of eighty 5S rDNA clones were obtained by polymerase chain reaction (PCR) amplification of DNA from 12 accessions representing eight species of Kengyilia. Orthologous sequences were grouped into five unit classes: long P1, long S1, long {Y1, short P1, and short S1. Both the long P1 and long S1 classes are prevalent in Kengyilia, whereas the rest are rare. The short S1 class has not been described previously in other Kengyilia species. Two clones represent the long {Y1 class, with only one clone reported previously in Kengyilia alatavica (Drobow) J.L. Yang, Yen & Baum and a single clone found in this investigation. The long H1 unit class reported earlier for Kengyilia rigidula (Keng and S.L. Chen) J.L. Yang, Yen & Baum, but not for K. alatavica, was not found in any of the eight species investigated. Therefore, its presence in K. rigidula may be the result of introgression from Elymus nutans Grisebach, an HS-genome species containing the long H1 unit class; the two are often found growing together and are known to yield sterile hybrids in those populations. The specific 5S DNA unit classes, except for the ones that were found in very low frequency and in few samples, may have a potential not only as markers for the identification of haplomes but also of hybrids containing a combination of genomes. This investigation indicated, along with previous studies, that the 5S unit classes either form integral parts of haplomes or remain conserved and identifiable within haplomes originating from distant species, indicating that concerted evolution in the 5S gene plays only a partial role as an evolutionary force.Key words: 5S DNA gene, molecular diversity, Kengyilia, Triticeae, concerted evolution.
The sequences of eighty 5S rDNA clones were obtained by polymerase chain reaction (PCR) amplification of DNA from 12 accessions representing eight species of Kengyilia. Orthologous sequences were grouped into five unit classes: long P1, long S1, long {Y1, short P1, and short S1. Both the long P1 and long S1 classes are prevalent in Kengyilia, whereas the rest are rare. The short S1 class has not been described previously in other Kengyilia species. Two clones represent the long {Y1 class, with only one clone reported previously in Kengyilia alatavica (Drobow) J.L. Yang, Yen & Baum and a single clone found in this investigation. The long H1 unit class reported earlier for Kengyilia rigidula (Keng and S.L. Chen) J.L. Yang, Yen & Baum, but not for K. alatavica, was not found in any of the eight species investigated. Therefore, its presence in K. rigidula may be the result of introgression from Elymus nutans Grisebach, an HS-genome species containing the long H1 unit class; the two are often found growing together and are known to yield sterile hybrids in those populations. The specific 5S DNA unit classes, except for the ones that were found in very low frequency and in few samples, may have a potential not only as markers for the identification of haplomes but also of hybrids containing a combination of genomes. This investigation indicated, along with previous studies, that the 5S unit classes either form integral parts of haplomes or remain conserved and identifiable within haplomes originating from distant species, indicating that concerted evolution in the 5S gene plays only a partial role as an evolutionary force.Key words: 5S DNA gene, molecular diversity, Kengyilia, Triticeae, concerted evolution.
참고문헌 (23)
J. Mol. Biol. Altschul S.F. 403 215 1990 10.1016/S0022-2836(05)80360-2
※ AI-Helper는 부적절한 답변을 할 수 있습니다.