$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Radiation profile reconstruction of infrared imaging video bolometer data using a machine learning algorithm

Plasma physics and controlled fusion, v.62 no.3, 2020년, pp.035014 -   

Oh, Seungtae (National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333, Korea) ,  Jang, Juhyeok (National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333, Korea) ,  Peterson, Byron (National Institute of Fusion Science, 322-6 Oroshi-cho, Toki City, Gifu, Japan)

Abstract AI-Helper 아이콘AI-Helper

An alternative method using a machine learning (ML) algorithm is presented for the reconstruction of the plasma radiation profile (plasma radiation power profile in a poloidal cross-section) from the foil image of the infrared imaging video bolometer (IRVB). In the data analysis of the IRVB, the pla...

참고문헌 (38)

  1. [1] Goetz J A, Lipschultz B, Graf M A, Kurz C, Nachtrieb R, Snipes J A and Terry J L 1995 Power balance and scaling of the radiated power in the divertor and main plasma of Alcator C-Mod J. Nucl. Mater. 220 971–5 10.1016/0022-3115(94)00456-0 Power balance and scaling of the radiated power in the divertor and main plasma of Alcator C-Mod Goetz J A, Lipschultz B, Graf M A, Kurz C, Nachtrieb R, Snipes J A and Terry J L J. Nucl. Mater. 0022-3115 220 1995 971 975 

  2. [2] Kallenbach A et al 2013 Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO Plasma Phys. Controlled Fusion 55 124041 10.1088/0741-3335/55/12/124041 Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO Kallenbach A et al Plasma Phys. Controlled Fusion 0741-3335 55 12 124041 2013 

  3. [3] Dumortier P et al 2002 Confinement properties of high density impurity seeded ELMy H-mode discharges at low and high triangularity on JET Plasma Phys. Controlled Fusion 44 1845 10.1088/0741-3335/44/9/304 Confinement properties of high density impurity seeded ELMy H-mode discharges at low and high triangularity on JET Dumortier P et al Plasma Phys. Controlled Fusion 0741-3335 44 9 304 2002 1845 

  4. [4] Rapp J et al 2004 Reduction of divertor heat load in JET ELMy H-modes using impurity seeding techniques Nucl. Fusion 44 10.1088/0029-5515/44/2/013 Reduction of divertor heat load in JET ELMy H-modes using impurity seeding techniques Rapp J et al Nucl. Fusion 0029-5515 44 2 013 2004 

  5. [5] Chen H, Giannella R, Hawkes N C, Lauro-Taroni L, Peacock N J and von Hellermann M 2001 Study of impurity behaviour during JET radiative boundary experiments Plasma Phys. Controlled Fusion 43 1–12 10.1088/0741-3335/43/1/301 Study of impurity behaviour during JET radiative boundary experiments Chen H, Giannella R, Hawkes N C, Lauro-Taroni L, Peacock N J and von Hellermann M Plasma Phys. Controlled Fusion 0741-3335 43 1 301 2001 1 12 

  6. [6] Valisa M et al 2011 Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection Nucl. Fusion 51 033002 10.1088/0029-5515/51/3/033002 Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection Valisa M et al Nucl. Fusion 0029-5515 51 3 033002 2011 

  7. [7] Veres G, Pitts R A, Bencze A, Márki J, Tál B, Tye R and TCV Team 2009 Fast radiation dynamics during ELMs on TCV J. Nucl. Mater. 390 835–8 10.1016/j.jnucmat.2009.01.220 Fast radiation dynamics during ELMs on TCV Veres G, Pitts R A, Bencze A, Márki J, Tál B, Tye R and TCV Team J. Nucl. Mater. 0022-3115 390 2009 835 838 

  8. [8] Pautasso G et al 2011 Contribution of ASDEX Upgrade to disruption studies for ITER Nucl. Fusion 51 19009 10.1088/0029-5515/51/10/103009 Contribution of ASDEX Upgrade to disruption studies for ITER Pautasso G et al Nucl. Fusion 0029-5515 51 19009 2011 

  9. [9] Peterson1 B J, Parchamy H, Ashikawa N, Kawashima H, Konoshima S, Kostryukov A Y, Miroshnikov I V, Seo D and Omori T 2008 Development of imaging bolometers for magnetic fusion reactors Rev. Sci. Instrum. 79 10E301 10.1063/1.2988822 Development of imaging bolometers for magnetic fusion reactors Peterson1 B J, Parchamy H, Ashikawa N, Kawashima H, Konoshima S, Kostryukov A Y, Miroshnikov I V, Seo D and Omori T Rev. Sci. Instrum. 79 10E301 2008 

  10. [10] Jang J, Choe W, Petersond B J, Seo D C, Mukai K, Sano R, Oh S, Hong S H, Hong J and Lee H Y 2018 Tomographic reconstruction of two-dimensional radiated power distribution during impurity injection in KSTAR plasmas using an infrared imaging video bolometer Curr. Appl Phys. 18 461–8 10.1016/j.cap.2018.01.009 Tomographic reconstruction of two-dimensional radiated power distribution during impurity injection in KSTAR plasmas using an infrared imaging video bolometer Jang J, Choe W, Petersond B J, Seo D C, Mukai K, Sano R, Oh S, Hong S H, Hong J and Lee H Y Curr. Appl Phys. 1567-1739 18 2018 461 468 

  11. [11] Oh S, Jang J, Peterson B, Choe W and Hong S H 2018 Forward projection matrix derivation through Monte-Carlo ray-tracing of KSTAR infra-red imaging video bolometer (IRVB) Rev. Sci. Instrum. 89 10E18 10.1063/1.5036929 Forward projection matrix derivation through Monte-Carlo ray-tracing of KSTAR infra-red imaging video bolometer (IRVB) Oh S, Jang J, Peterson B, Choe W and Hong S H Rev. Sci. Instrum. 89 10E18 2018 

  12. [12] Iwama N, Yoshida H, Takimoto H, Shen Y, Takamura S and Tsukishima T 1989 Phillips–Tikhonov regularization of plasma image reconstruction with the generalized cross validation Appl. Phys. Lett. 54 502–4 10.1063/1.100912 Phillips–Tikhonov regularization of plasma image reconstruction with the generalized cross validation Iwama N, Yoshida H, Takimoto H, Shen Y, Takamura S and Tsukishima T Appl. Phys. Lett. 54 1989 502 504 

  13. [13] Golub G H, Heath M and Wahba G 1979 Generalized cross-validation as a method for choosing a good ridge parameter Technometrics 21 215–23 10.1080/00401706.1979.10489751 Generalized cross-validation as a method for choosing a good ridge parameter Golub G H, Heath M and Wahba G Technometrics 0040-1706 21 1979 215 223 

  14. [14] Gao J M, Liu Y, Li W, Lu J, Dong Y B, Xia Z W, Yi P and Yang Q W 2013 Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A Rev. Sci. Instrum. 84 093503 10.1063/1.4820920 Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A Gao J M, Liu Y, Li W, Lu J, Dong Y B, Xia Z W, Yi P and Yang Q W Rev. Sci. Instrum. 84 093503 2013 

  15. [15] Gao J M, Liu Y, Li W, Cui Z Y, Dong Y B, Lu J, Xia Z W, Yi P and Yang Q W 2014 Inversion of infrared imaging bolometer based on one-dimensional and three-dimensional modeling in HL-2A Rev. Sci. Instrum. 85 043505 10.1063/1.4870408 Inversion of infrared imaging bolometer based on one-dimensional and three-dimensional modeling in HL-2A Gao J M, Liu Y, Li W, Cui Z Y, Dong Y B, Lu J, Xia Z W, Yi P and Yang Q W Rev. Sci. Instrum. 85 043505 2014 

  16. [16] Jang J, Peterson B J, Oh S, Mukai K, Hong S-H and Choe W 2018 Reconstruction of radiation profiles near the plasma boundary using an infrared imaging video bolometer in KSTAR Rev. Sci. Instrum. 89 10E111 10.1063/1.5038904 Reconstruction of radiation profiles near the plasma boundary using an infrared imaging video bolometer in KSTAR Jang J, Peterson B J, Oh S, Mukai K, Hong S-H and Choe W Rev. Sci. Instrum. 89 10E111 2018 

  17. [17] Liu Y, Tamura N, Peterson B J, Iwama N, Konoshima S and LHD Experimental Group 2007 Application of tomographic imaging to multi-pixel bolometric measurements Plasma and Fusion Research: Regular Articles 2 S1124 10.1585/pfr.2.S1124 Application of tomographic imaging to multi-pixel bolometric measurements Liu Y, Tamura N, Peterson B J, Iwama N, Konoshima S and LHD Experimental Group Plasma and Fusion Research: Regular Articles 2 S1124 2007 

  18. [18] Ryuichi Sano B J, Peterson M, Teranishi N, Iwama M, Kobayashi K, Mukai and Pandya S N 2016 Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma Rev. Sci. Instrum. 87 053502 10.1063/1.4948392 Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma Ryuichi Sano B J, Peterson M, Teranishi N, Iwama M, Kobayashi K, Mukai and Pandya S N Rev. Sci. Instrum. 87 053502 2016 

  19. [19] Krizhevsky A, Sutskever I and Hinton G E 2012 Imagenet classification with deep convolutional neural networks Advances in Neural Information Processing Systems 1097–136 Imagenet classification with deep convolutional neural networks Krizhevsky A, Sutskever I and Hinton G E Advances in Neural Information Processing Systems 1049-5258 2012 1097 1136 

  20. [20] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436 10.1038/nature14539 Deep learning LeCun Y, Bengio Y and Hinton G Nature 521 2015 436 

  21. [21] Bishop C, Haynes P S, Smith M E U, Todd T N and Trotman D L 1994 Neural Comput. 7 206 10.1162/neco.1995.7.1.206 Bishop C, Haynes P S, Smith M E U, Todd T N and Trotman D L Neural Comput. 7 1994 206 

  22. [22] Barana O, Manduchi G, Serri A and Sonato P 2001 Fusion Eng. Des. 55 9 10.1016/S0920-3796(00)00551-2 Barana O, Manduchi G, Serri A and Sonato P Fusion Eng. Des. 0920-3796 55 2001 9 

  23. [23] Lister J B and Schnurremberger H 1991 Nucl. Fusion 31 1291 10.1088/0029-5515/31/7/005 Lister J B and Schnurremberger H Nucl. Fusion 0029-5515 31 7 005 1991 1291 

  24. [24] Coccorese E, Morabito C and Martone R 1994 Nucl. Fusion 34 1349 10.1088/0029-5515/34/10/I05 Coccorese E, Morabito C and Martone R Nucl. Fusion 0029-5515 34 10 I05 1994 1349 

  25. [25] Svensson J, von Hellermann M and Konig R 1999 Plasma Phys. Controlled Fusion 41 315 10.1088/0741-3335/41/2/016 Svensson J, von Hellermann M and Konig R Plasma Phys. Controlled Fusion 0741-3335 41 2 016 1999 315 

  26. [26] Hernandez J V, Vannucci A, Tajima T, Lin Z, Horton W and McCool S C 1996 Nucl. Fusion 36 1009 10.1088/0029-5515/36/8/I05 Hernandez J V, Vannucci A, Tajima T, Lin Z, Horton W and McCool S C Nucl. Fusion 0029-5515 36 8 I05 1996 1009 

  27. [27] Wrobleski D, Jagns G L and Leuer J A 1997 Nucl. Fusion 37 725 10.1088/0029-5515/37/6/I02 Wrobleski D, Jagns G L and Leuer J A Nucl. Fusion 0029-5515 37 6 I02 1997 725 

  28. [28] Barana O, Murari A, Franz P, Ingesson L C and Manduchi G 2002 Neural networks for real time determination of radiated power in JET Rev. Sci. Instrum. 73 2038 10.1063/1.1463714 Neural networks for real time determination of radiated power in JET Barana O, Murari A, Franz P, Ingesson L C and Manduchi G Rev. Sci. Instrum. 73 2002 2038 

  29. [29] Matos F A, Ferreira D R, Carvalho P J and JET Contributors 2017 Deep learning for plasma tomography using the bolometer system at JET Fusion Eng. Des. 114 18–25 10.1016/j.fusengdes.2016.11.006 Deep learning for plasma tomography using the bolometer system at JET Matos F A, Ferreira D R, Carvalho P J and JET Contributors Fusion Eng. Des. 0920-3796 114 2017 18 25 

  30. [30] Ferreira D R and J.E.T. Contributors 2018 Applications of deep learning to nuclear fusion research arXiv preprint arXiv:1811.00333 Applications of deep learning to nuclear fusion research Ferreira D R and J.E.T. Contributors 2018 

  31. [31] Noh H, Hong S and Han B 2015 Learning deconvolution network for semantic segmentation Proc. of the IEEE Int. Conf. on Computer Vision pp 1520–8 arXiv:1505.04366 Learning deconvolution network for semantic segmentation Noh H, Hong S and Han B Proc. of the IEEE Int. Conf. on Computer Vision 2015 1520 1528 

  32. [32] Ososkov G and Goncharov P 2018 Two-stage approach to image classification by deep neural networks EPJ Web of Conferences 173 01009 10.1051/epjconf/201817301009 Two-stage approach to image classification by deep neural networks Ososkov G and Goncharov P EPJ Web of Conferences 173 2018 01009 

  33. [33] Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A and Shi W 2017 Photo-realistic single image super-resolution using a generative adversarial network Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition pp 4681–90 arXiv:1609.04802 Photo-realistic single image super-resolution using a generative adversarial network Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A and Shi W Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition 2017 4681 4690 

  34. [34] Hinton G E, Osindero S and Teh Y-W 2006 A fast learning algorithm for deep belief nets Neural Comput. 18 1527–54 10.1162/neco.2006.18.7.1527 A fast learning algorithm for deep belief nets Hinton G E, Osindero S and Teh Y-W Neural Comput. 18 2006 1527 1554 

  35. [35] Vinod N and Hinton G E 2010 Rectified linear units improve restricted boltzmann machines Proc. of the 27th Int. Conf. on Machine Learning (ICML-10) Rectified linear units improve restricted boltzmann machines Vinod N and Hinton G E Proc. of the 27th Int. Conf. on Machine Learning (ICML-10) 2010 

  36. [36] Seide F and Agarwal A 2016 CNTK: Microsoft’s open-source deep-learning toolkit Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining p 2135 10.1145/2939672.2945397 CNTK: Microsoft’s open-source deep-learning toolkit Seide F and Agarwal A Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016 2135 

  37. [37] Kingma D P and Ba J L 2015 ADAM: a method for stochastic optimization International Conference on Learning Representations (ICLR) 2015 1–13 arXiv:1412.6980 ADAM: a method for stochastic optimization Kingma D P and Ba J L International Conference on Learning Representations (ICLR) 2015 2015 1 13 

  38. [38] Wang Z, Bovik A C, Sheikh H R and Simoncelli E P 2004 Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process. 13 600–12 10.1109/TIP.2003.819861 Image quality assessment: from error visibility to structural similarity Wang Z, Bovik A C, Sheikh H R and Simoncelli E P IEEE Trans. Image Process. 1057-7149 13 2004 600 612 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로