최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Plasma physics and controlled fusion, v.62 no.3, 2020년, pp.035014 -
Oh, Seungtae (National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333, Korea) , Jang, Juhyeok (National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333, Korea) , Peterson, Byron (National Institute of Fusion Science, 322-6 Oroshi-cho, Toki City, Gifu, Japan)
An alternative method using a machine learning (ML) algorithm is presented for the reconstruction of the plasma radiation profile (plasma radiation power profile in a poloidal cross-section) from the foil image of the infrared imaging video bolometer (IRVB). In the data analysis of the IRVB, the pla...
[1] Goetz J A, Lipschultz B, Graf M A, Kurz C, Nachtrieb R, Snipes J A and Terry J L 1995 Power balance and scaling of the radiated power in the divertor and main plasma of Alcator C-Mod J. Nucl. Mater. 220 971–5 10.1016/0022-3115(94)00456-0 Power balance and scaling of the radiated power in the divertor and main plasma of Alcator C-Mod Goetz J A, Lipschultz B, Graf M A, Kurz C, Nachtrieb R, Snipes J A and Terry J L J. Nucl. Mater. 0022-3115 220 1995 971 975
[2] Kallenbach A et al 2013 Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO Plasma Phys. Controlled Fusion 55 124041 10.1088/0741-3335/55/12/124041 Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO Kallenbach A et al Plasma Phys. Controlled Fusion 0741-3335 55 12 124041 2013
[3] Dumortier P et al 2002 Confinement properties of high density impurity seeded ELMy H-mode discharges at low and high triangularity on JET Plasma Phys. Controlled Fusion 44 1845 10.1088/0741-3335/44/9/304 Confinement properties of high density impurity seeded ELMy H-mode discharges at low and high triangularity on JET Dumortier P et al Plasma Phys. Controlled Fusion 0741-3335 44 9 304 2002 1845
[4] Rapp J et al 2004 Reduction of divertor heat load in JET ELMy H-modes using impurity seeding techniques Nucl. Fusion 44 10.1088/0029-5515/44/2/013 Reduction of divertor heat load in JET ELMy H-modes using impurity seeding techniques Rapp J et al Nucl. Fusion 0029-5515 44 2 013 2004
[5] Chen H, Giannella R, Hawkes N C, Lauro-Taroni L, Peacock N J and von Hellermann M 2001 Study of impurity behaviour during JET radiative boundary experiments Plasma Phys. Controlled Fusion 43 1–12 10.1088/0741-3335/43/1/301 Study of impurity behaviour during JET radiative boundary experiments Chen H, Giannella R, Hawkes N C, Lauro-Taroni L, Peacock N J and von Hellermann M Plasma Phys. Controlled Fusion 0741-3335 43 1 301 2001 1 12
[6] Valisa M et al 2011 Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection Nucl. Fusion 51 033002 10.1088/0029-5515/51/3/033002 Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection Valisa M et al Nucl. Fusion 0029-5515 51 3 033002 2011
[7] Veres G, Pitts R A, Bencze A, Márki J, Tál B, Tye R and TCV Team 2009 Fast radiation dynamics during ELMs on TCV J. Nucl. Mater. 390 835–8 10.1016/j.jnucmat.2009.01.220 Fast radiation dynamics during ELMs on TCV Veres G, Pitts R A, Bencze A, Márki J, Tál B, Tye R and TCV Team J. Nucl. Mater. 0022-3115 390 2009 835 838
[8] Pautasso G et al 2011 Contribution of ASDEX Upgrade to disruption studies for ITER Nucl. Fusion 51 19009 10.1088/0029-5515/51/10/103009 Contribution of ASDEX Upgrade to disruption studies for ITER Pautasso G et al Nucl. Fusion 0029-5515 51 19009 2011
[9] Peterson1 B J, Parchamy H, Ashikawa N, Kawashima H, Konoshima S, Kostryukov A Y, Miroshnikov I V, Seo D and Omori T 2008 Development of imaging bolometers for magnetic fusion reactors Rev. Sci. Instrum. 79 10E301 10.1063/1.2988822 Development of imaging bolometers for magnetic fusion reactors Peterson1 B J, Parchamy H, Ashikawa N, Kawashima H, Konoshima S, Kostryukov A Y, Miroshnikov I V, Seo D and Omori T Rev. Sci. Instrum. 79 10E301 2008
[10] Jang J, Choe W, Petersond B J, Seo D C, Mukai K, Sano R, Oh S, Hong S H, Hong J and Lee H Y 2018 Tomographic reconstruction of two-dimensional radiated power distribution during impurity injection in KSTAR plasmas using an infrared imaging video bolometer Curr. Appl Phys. 18 461–8 10.1016/j.cap.2018.01.009 Tomographic reconstruction of two-dimensional radiated power distribution during impurity injection in KSTAR plasmas using an infrared imaging video bolometer Jang J, Choe W, Petersond B J, Seo D C, Mukai K, Sano R, Oh S, Hong S H, Hong J and Lee H Y Curr. Appl Phys. 1567-1739 18 2018 461 468
[11] Oh S, Jang J, Peterson B, Choe W and Hong S H 2018 Forward projection matrix derivation through Monte-Carlo ray-tracing of KSTAR infra-red imaging video bolometer (IRVB) Rev. Sci. Instrum. 89 10E18 10.1063/1.5036929 Forward projection matrix derivation through Monte-Carlo ray-tracing of KSTAR infra-red imaging video bolometer (IRVB) Oh S, Jang J, Peterson B, Choe W and Hong S H Rev. Sci. Instrum. 89 10E18 2018
[12] Iwama N, Yoshida H, Takimoto H, Shen Y, Takamura S and Tsukishima T 1989 Phillips–Tikhonov regularization of plasma image reconstruction with the generalized cross validation Appl. Phys. Lett. 54 502–4 10.1063/1.100912 Phillips–Tikhonov regularization of plasma image reconstruction with the generalized cross validation Iwama N, Yoshida H, Takimoto H, Shen Y, Takamura S and Tsukishima T Appl. Phys. Lett. 54 1989 502 504
[13] Golub G H, Heath M and Wahba G 1979 Generalized cross-validation as a method for choosing a good ridge parameter Technometrics 21 215–23 10.1080/00401706.1979.10489751 Generalized cross-validation as a method for choosing a good ridge parameter Golub G H, Heath M and Wahba G Technometrics 0040-1706 21 1979 215 223
[14] Gao J M, Liu Y, Li W, Lu J, Dong Y B, Xia Z W, Yi P and Yang Q W 2013 Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A Rev. Sci. Instrum. 84 093503 10.1063/1.4820920 Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A Gao J M, Liu Y, Li W, Lu J, Dong Y B, Xia Z W, Yi P and Yang Q W Rev. Sci. Instrum. 84 093503 2013
[15] Gao J M, Liu Y, Li W, Cui Z Y, Dong Y B, Lu J, Xia Z W, Yi P and Yang Q W 2014 Inversion of infrared imaging bolometer based on one-dimensional and three-dimensional modeling in HL-2A Rev. Sci. Instrum. 85 043505 10.1063/1.4870408 Inversion of infrared imaging bolometer based on one-dimensional and three-dimensional modeling in HL-2A Gao J M, Liu Y, Li W, Cui Z Y, Dong Y B, Lu J, Xia Z W, Yi P and Yang Q W Rev. Sci. Instrum. 85 043505 2014
[16] Jang J, Peterson B J, Oh S, Mukai K, Hong S-H and Choe W 2018 Reconstruction of radiation profiles near the plasma boundary using an infrared imaging video bolometer in KSTAR Rev. Sci. Instrum. 89 10E111 10.1063/1.5038904 Reconstruction of radiation profiles near the plasma boundary using an infrared imaging video bolometer in KSTAR Jang J, Peterson B J, Oh S, Mukai K, Hong S-H and Choe W Rev. Sci. Instrum. 89 10E111 2018
[17] Liu Y, Tamura N, Peterson B J, Iwama N, Konoshima S and LHD Experimental Group 2007 Application of tomographic imaging to multi-pixel bolometric measurements Plasma and Fusion Research: Regular Articles 2 S1124 10.1585/pfr.2.S1124 Application of tomographic imaging to multi-pixel bolometric measurements Liu Y, Tamura N, Peterson B J, Iwama N, Konoshima S and LHD Experimental Group Plasma and Fusion Research: Regular Articles 2 S1124 2007
[18] Ryuichi Sano B J, Peterson M, Teranishi N, Iwama M, Kobayashi K, Mukai and Pandya S N 2016 Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma Rev. Sci. Instrum. 87 053502 10.1063/1.4948392 Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma Ryuichi Sano B J, Peterson M, Teranishi N, Iwama M, Kobayashi K, Mukai and Pandya S N Rev. Sci. Instrum. 87 053502 2016
[19] Krizhevsky A, Sutskever I and Hinton G E 2012 Imagenet classification with deep convolutional neural networks Advances in Neural Information Processing Systems 1097–136 Imagenet classification with deep convolutional neural networks Krizhevsky A, Sutskever I and Hinton G E Advances in Neural Information Processing Systems 1049-5258 2012 1097 1136
[20] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436 10.1038/nature14539 Deep learning LeCun Y, Bengio Y and Hinton G Nature 521 2015 436
[21] Bishop C, Haynes P S, Smith M E U, Todd T N and Trotman D L 1994 Neural Comput. 7 206 10.1162/neco.1995.7.1.206 Bishop C, Haynes P S, Smith M E U, Todd T N and Trotman D L Neural Comput. 7 1994 206
[22] Barana O, Manduchi G, Serri A and Sonato P 2001 Fusion Eng. Des. 55 9 10.1016/S0920-3796(00)00551-2 Barana O, Manduchi G, Serri A and Sonato P Fusion Eng. Des. 0920-3796 55 2001 9
[23] Lister J B and Schnurremberger H 1991 Nucl. Fusion 31 1291 10.1088/0029-5515/31/7/005 Lister J B and Schnurremberger H Nucl. Fusion 0029-5515 31 7 005 1991 1291
[24] Coccorese E, Morabito C and Martone R 1994 Nucl. Fusion 34 1349 10.1088/0029-5515/34/10/I05 Coccorese E, Morabito C and Martone R Nucl. Fusion 0029-5515 34 10 I05 1994 1349
[25] Svensson J, von Hellermann M and Konig R 1999 Plasma Phys. Controlled Fusion 41 315 10.1088/0741-3335/41/2/016 Svensson J, von Hellermann M and Konig R Plasma Phys. Controlled Fusion 0741-3335 41 2 016 1999 315
[26] Hernandez J V, Vannucci A, Tajima T, Lin Z, Horton W and McCool S C 1996 Nucl. Fusion 36 1009 10.1088/0029-5515/36/8/I05 Hernandez J V, Vannucci A, Tajima T, Lin Z, Horton W and McCool S C Nucl. Fusion 0029-5515 36 8 I05 1996 1009
[27] Wrobleski D, Jagns G L and Leuer J A 1997 Nucl. Fusion 37 725 10.1088/0029-5515/37/6/I02 Wrobleski D, Jagns G L and Leuer J A Nucl. Fusion 0029-5515 37 6 I02 1997 725
[28] Barana O, Murari A, Franz P, Ingesson L C and Manduchi G 2002 Neural networks for real time determination of radiated power in JET Rev. Sci. Instrum. 73 2038 10.1063/1.1463714 Neural networks for real time determination of radiated power in JET Barana O, Murari A, Franz P, Ingesson L C and Manduchi G Rev. Sci. Instrum. 73 2002 2038
[29] Matos F A, Ferreira D R, Carvalho P J and JET Contributors 2017 Deep learning for plasma tomography using the bolometer system at JET Fusion Eng. Des. 114 18–25 10.1016/j.fusengdes.2016.11.006 Deep learning for plasma tomography using the bolometer system at JET Matos F A, Ferreira D R, Carvalho P J and JET Contributors Fusion Eng. Des. 0920-3796 114 2017 18 25
[30] Ferreira D R and J.E.T. Contributors 2018 Applications of deep learning to nuclear fusion research arXiv preprint arXiv:1811.00333 Applications of deep learning to nuclear fusion research Ferreira D R and J.E.T. Contributors 2018
[31] Noh H, Hong S and Han B 2015 Learning deconvolution network for semantic segmentation Proc. of the IEEE Int. Conf. on Computer Vision pp 1520–8 arXiv:1505.04366 Learning deconvolution network for semantic segmentation Noh H, Hong S and Han B Proc. of the IEEE Int. Conf. on Computer Vision 2015 1520 1528
[32] Ososkov G and Goncharov P 2018 Two-stage approach to image classification by deep neural networks EPJ Web of Conferences 173 01009 10.1051/epjconf/201817301009 Two-stage approach to image classification by deep neural networks Ososkov G and Goncharov P EPJ Web of Conferences 173 2018 01009
[33] Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A and Shi W 2017 Photo-realistic single image super-resolution using a generative adversarial network Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition pp 4681–90 arXiv:1609.04802 Photo-realistic single image super-resolution using a generative adversarial network Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A and Shi W Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition 2017 4681 4690
[34] Hinton G E, Osindero S and Teh Y-W 2006 A fast learning algorithm for deep belief nets Neural Comput. 18 1527–54 10.1162/neco.2006.18.7.1527 A fast learning algorithm for deep belief nets Hinton G E, Osindero S and Teh Y-W Neural Comput. 18 2006 1527 1554
[35] Vinod N and Hinton G E 2010 Rectified linear units improve restricted boltzmann machines Proc. of the 27th Int. Conf. on Machine Learning (ICML-10) Rectified linear units improve restricted boltzmann machines Vinod N and Hinton G E Proc. of the 27th Int. Conf. on Machine Learning (ICML-10) 2010
[36] Seide F and Agarwal A 2016 CNTK: Microsoft’s open-source deep-learning toolkit Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining p 2135 10.1145/2939672.2945397 CNTK: Microsoft’s open-source deep-learning toolkit Seide F and Agarwal A Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016 2135
[37] Kingma D P and Ba J L 2015 ADAM: a method for stochastic optimization International Conference on Learning Representations (ICLR) 2015 1–13 arXiv:1412.6980 ADAM: a method for stochastic optimization Kingma D P and Ba J L International Conference on Learning Representations (ICLR) 2015 2015 1 13
[38] Wang Z, Bovik A C, Sheikh H R and Simoncelli E P 2004 Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process. 13 600–12 10.1109/TIP.2003.819861 Image quality assessment: from error visibility to structural similarity Wang Z, Bovik A C, Sheikh H R and Simoncelli E P IEEE Trans. Image Process. 1057-7149 13 2004 600 612
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.