최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Environmental geochemistry and health, v.22 no.4, 2000년, pp.281 - 296
Dodd, J. (School of Chemical, Environmental and Mining Engineering, University of Nottingham, Nottingham, England) , Large, D.J. (School of Chemical, Environmental and Mining Engineering, University of Nottingham, Nottingham, England) , Fortey, N.J. (fax: +44 115 951 4115) , Milodowski, A.E. (e-mail: david.large@nottingham.ac.uk) , Kemp, S. (British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, England)
The application of sequential extraction procedures to determine metal speciation in sediments is fraught with uncertainty regarding what is actually dissolving or re-precipitating at each stage. In order to choose an appropriate scheme for the investigation of contaminated anaerobic mud two different sequential extraction procedures (Kersten and Förstner, 1986; Quevauviller, 1998) were investigated using a Cryogenic SEM (CryoSEM) technique coupled with energy dispersive X-ray analysis (EDXA). This enabled assessment of the degree of reagent selectivity and any re-precipitation associated with the respective methods. Analysis of the non-leached sediment revealed the most abundant authigenic minerals in order of decreasing abundance to be Fe2+-phosphate vivianite (Fe3(PO4)2·8H2O), mixed Fe, Zn, Cu sulphides, pyrite and calcite. After each stage of the sequential extraction the sediment residue was examined using CryoSEM. After extraction of the exchangeable fraction no obvious evidence of mineral dissolution was observed. Calcite was not completely dissolved during the carbonate extraction stage of either procedure. Vivianite began to dissolve in the carbonate extraction stage of both procedures and was completely dissolved by oxide extraction stage of both procedures. The sediment leached by acidified ammonium oxalate, contained abundant Fe oxalate crystals, suggesting that a large proportion of the Fe released from the vivianite has been re-precipitated. The Fe oxalate was then dissolved with the subsequent sulphide fraction. The technique used to extract the sulphide and organic fraction is the same in both schemes and no sulphide or metal rich organic matter was found in either residue.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.