$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Intelligent Missing Shots’ Reconstruction Using the Spatial Reciprocity of Green’s Function Based on Deep Learning

IEEE transactions on geoscience and remote sensing : a publication of the IEEE Geoscience and Remote Sensing Society, v.58 no.3, 2020년, pp.1587 - 1597  

Wang, Benfeng (Institute for Advanced Study, Tongji University, State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Shanghai, China) ,  Zhang, Ning (Tsinghua University, EasySignal Group, Beijing, China) ,  Lu, Wenkai (Tsinghua University, EasySignal Group, Beijing, China) ,  Geng, Jianhua (Institute for Advanced Study, Tongji University, State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Shanghai, China) ,  Huang, Xueyuan (Beijing Technology and Business University, School of Science, Beijing, China)

Abstract AI-Helper 아이콘AI-Helper

The trace interval in the common shot and receiver gathers is always inconsistent. The inconsistency affects the final performance of seismic data processing, and the reconstruction methods can enhance the consistency. Unfortunately, most interpolation algorithms are suitable in randomly missing cas...

참고문헌 (47)

  1. Proc Int Conf Learn Represent Very deep convolutional networks for large-scale image recognition simonyan 2015 1 

  2. 10.1109/CVPR.2016.181 

  3. Yuan, Sanyi, Liu, Jiwei, Wang, Shangxu, Wang, Tieyi, Shi, Peidong. Seismic Waveform Classification and First-Break Picking Using Convolution Neural Networks. IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society, vol.15, no.2, 272-276.

  4. Xu, Pengcheng, Lu, Wenkai, Wang, Benfeng. A semi-supervised learning framework for gas chimney detection based on sparse autoencoder and TSVM. Journal of Geophysics and Engineering, vol.16, no.1, 52-61.

  5. Jia, Yongna, Yu, Siwei, Ma, Jianwei. Intelligent interpolation by Monte Carlo machine learning. Geophysics, vol.83, no.2, V83-V97.

  6. Jia, Yongna, Ma, Jianwei. What can machine learning do for seismic data processing? An interpolation application. Geophysics, vol.82, no.3, V163-V177.

  7. Proc Eur Conf Comput Vis Learning a deep convolutional network for image super-resolution dong 2014 184 

  8. Wang, Benfeng, Zhang, Ning, Lu, Wenkai, Wang, Jialin. Deep-learning-based seismic data interpolation: A preliminary result. Geophysics, vol.84, no.1, V11-V20.

  9. Huang, Lei, Dong, Xishuang, Clee, T. Edward. A scalable deep learning platform for identifying geologic features from seismic attributes. The leading edge, vol.36, no.3, 249-256.

  10. 10.3997/2214-4609.201801390 

  11. Duijndam, A. J. W., Schonewille, M. A.. Nonuniform fast Fourier transform. Geophysics, vol.64, no.2, 539-551.

  12. Araya-Polo, Mauricio, Dahlke, Taylor, Frogner, Charlie, Zhang, Chiyuan, Poggio, Tomaso, Hohl, Detlef. Automated fault detection without seismic processing. The leading edge, vol.36, no.3, 208-214.

  13. Chen, Yangkang, Zhang, Dong, Jin, Zhaoyu, Chen, Xiaohong, Zu, Shaohuan, Huang, Weilin, Gan, Shuwei. Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method. Geophysical journal international, vol.206, no.3, 1695-1717.

  14. Jianjun Gao, Jinkun Cheng, Sacchi, Mauricio D.. Five-Dimensional Seismic Reconstruction Using Parallel Square Matrix Factorization. IEEE transactions on geoscience and remote sensing : a publication of the IEEE Geoscience and Remote Sensing Society, vol.55, no.4, 2124-2135.

  15. Ma, Jianwei. Three-dimensional irregular seismic data reconstruction via low-rank matrix completion. Geophysics, vol.78, no.5, V181-V192.

  16. Spitz, S.. Seismic trace interpolation in theF-Xdomain. Geophysics, vol.56, no.6, 785-794.

  17. Naghizadeh, Mostafa, Sacchi, Mauricio D.. Multistep autoregressive reconstruction of seismic records. Geophysics, vol.72, no.6, V111-V118.

  18. 10.1190/1.3513645 

  19. Kreimer, Nadia, Stanton, Aaron, Sacchi, Mauricio D.. Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction. Geophysics, vol.78, no.6, V273-V284.

  20. Candès, Emmanuel, Demanet, Laurent, Donoho, David, Ying, Lexing. Fast Discrete Curvelet Transforms. Multiscale modeling & simulation, vol.5, no.3, 861-899.

  21. Kutyniok, G., Lim, W.Q.. Compactly supported shearlets are optimally sparse. Journal of approximation theory, vol.163, no.11, 1564-1589.

  22. Li, Chao, Liu, Guochang, Hao, Zhenjiang, Zu, Shaohuan, Mi, Fang, Chen, Xiaohong. Multidimensional Seismic Data Reconstruction Using Frequency-Domain Adaptive Prediction-Error Filter. IEEE transactions on geoscience and remote sensing : a publication of the IEEE Geoscience and Remote Sensing Society, vol.56, no.4, 2328-2336.

  23. Fomel, Sergey. Seismic reflection data interpolation with differential offset and shot continuation. Geophysics, vol.68, no.2, 733-744.

  24. Liu, Wei, Cao, Siyuan, Gan, Shuwei, Chen, Yangkang, Zu, Shaohuan, Jin, Zhaoyu. One-Step Slope Estimation for Dealiased Seismic Data Reconstruction via Iterative Seislet Thresholding. IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society, vol.13, no.10, 1462-1466.

  25. Ronen, Joshua. Wave‐equation trace interpolation. Geophysics, vol.52, no.7, 973-984.

  26. Benfeng Wang. An Efficient POCS Interpolation Method in the Frequency-Space Domain. IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society, vol.13, no.9, 1384-1387.

  27. Liu, Guochang, Chen, Xiaohong. Seismic data interpolation using frequency‐domain complex nonstationary autoregression. Geophysical prospecting, vol.66, no.3, 478-497.

  28. Wang, Benfeng, Wu, Ru-Shan, Chen, Xiaohong, Li, Jingye. Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform. Geophysical journal international, vol.201, no.2, 1182-1194.

  29. Abma, Ray, Kabir, Nurul. 3D interpolation of irregular data with a POCS algorithm. Geophysics, vol.71, no.6, E91-E97.

  30. Liu, Bin, Sacchi, Mauricio D.. Minimum weighted norm interpolation of seismic records. Geophysics, vol.69, no.6, 1560-1568.

  31. Wang, Benfeng, Chen, Xiaohong, Li, Jingye, Cao, Jingjie. An Improved Weighted Projection Onto Convex Sets Method for Seismic Data Interpolation and Denoising. IEEE journal of selected topics in applied earth observations and remote sensing, vol.9, no.1, 228-235.

  32. Trad, Daniel. Five-dimensional interpolation: Recovering from acquisition constraints. Geophysics, vol.74, no.6, V123-V132.

  33. J Seismic Explor A novel method for simultaneous seismic data interpolation and noise removal based on the L-0 norm constraint wang 2015 24 187 

  34. Quantitative Seismology aki 2002 

  35. Wang, B., Wu, R.S., Geng, Y., Chen, X.. Dreamlet-based interpolation using POCS method. Journal of applied geophysics, vol.109, 256-265.

  36. Proc Int Conf Mach Learn On the importance of initialization and momentum in deep learning sutskever 2013 1139 

  37. Fomel, Sergey, Liu, Yang. Seislet transform and seislet frame. Geophysics, vol.75, no.3, V25-V38.

  38. Tromp, Jeroen, Tape, Carl, Liu, Qinya. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels : Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical journal international, vol.160, no.1, 195-216.

  39. 10.1190/1.3628006 

  40. Bojarski, Norbert N.. Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the time-advanced and time-retarded fields. The Journal of the Acoustical Society of America, vol.74, no.1, 281-285.

  41. Gan, S., Wang, S., Chen, Y., Chen, X., Huang, W., Chen, H.. Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform. Journal of applied geophysics, vol.130, 194-208.

  42. Araya-Polo, Mauricio, Jennings, Joseph, Adler, Amir, Dahlke, Taylor. Deep-learning tomography. The leading edge, vol.37, no.1, 58-66.

  43. Herrmann, Felix J., Hennenfent, Gilles. Non-parametric seismic data recovery with curvelet frames. Geophysical journal international, vol.173, no.1, 233-248.

  44. 10.1145/2647868.2654889 

  45. IEEE Geosci Remote Sens Lett Dealiased seismic data interpolation using seislet transform with low-frequency constraint gan 2015 10.1109/LGRS.2015.2453119 12 2150 

  46. 10.1109/CVPR.2016.90 

  47. Naghizadeh, Mostafa, Sacchi, Mauricio D.. Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics, vol.75, no.6, WB189-WB202.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로