$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Anti-Contamination Strategies for Yeast Fermentations 원문보기

Microorganisms, v.8 no.2, 2020년, pp.274 -   

Seo, Seung-Oh (Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea) ,  Park, Sung-Kyun (drsos@catholic.ac.kr) ,  Jung, Suk-Chae (Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea) ,  Ryu, Choong-Min (skpark@kribb.re.kr (S.-K.P.)) ,  Kim, Jun-Seob (cmryu@kribb.re.kr (C.-M.R.))

Abstract AI-Helper 아이콘AI-Helper

Yeasts are very useful microorganisms that are used in many industrial fermentation processes such as food and alcohol production. Microbial contamination of such processes is inevitable, since most of the fermentation substrates are not sterile. Contamination can cause a reduction of the final prod...

Keyword

참고문헌 (116)

  1. 1. Feher J. Lengyel G. Lugasi A. Cultural history of wine, the theoretical background of wine therapy Orv. Hetil. 2005 146 2635 2639 10.2478/s11536-007-0048-9 16468605 

  2. 2. Barnett J.A. A history of research on yeasts 2: Louis pasteur and his contemporaries, 1850-1880 Yeast 2000 16 755 771 10.1002/1097-0061(20000615)16:8<755::AID-YEA587>3.0.CO;2-4 10861901 

  3. 3. Dashko S. Zhou N. Compagno C. Piskur J. Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 2014 14 826 832 10.1111/1567-1364.12161 24824836 

  4. 4. Gray W.D. Studies on the alcohol tolerance of yeasts J. Bacteriol. 1941 42 561 574 10.1128/JB.42.5.561-574.1941 16560468 

  5. 5. Vieira Gomes A.M. Souza Carmo T. Silva Carvalho L. Mendonca Bahia F. Parachin N.S. Comparison of yeasts as hosts for recombinant protein production Microorganisms 2018 6 10.3390/microorganisms6020038 

  6. 6. Esteve-Zarzoso B. Manzanares P. Ramon D. Querol A. The role of non-saccharomyces yeasts in industrial winemaking Int. Microbiol. 1998 1 143 148 10943352 

  7. 7. Beltran G. Torija M.J. Novo M. Ferrer N. Poblet M. Guillamon J.M. Rozes N. Mas A. Analysis of yeast populations during alcoholic fermentation: A six year follow-up study Syst. Appl. Microbiol. 2002 25 287 293 10.1078/0723-2020-00097 12353885 

  8. 8. Olesen K. Felding T. Gjermansen C. Hansen J. The dynamics of the saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation FEMS Yeast Res. 2002 2 563 573 12702272 

  9. 9. Holt S. Mukherjee V. Lievens B. Verstrepen K.J. Thevelein J.M. Bioflavoring by non-conventional yeasts in sequential beer fermentations Food Microbiol. 2018 72 55 66 10.1016/j.fm.2017.11.008 29407405 

  10. 10. Randez-Gil F. Corcoles-Saez I. Prieto J.A. Genetic and phenotypic characteristics of baker’s yeast: Relevance to baking Annu. Rev. Food Sci. Technol. 2013 4 191 214 10.1146/annurev-food-030212-182609 23464571 

  11. 11. Buijs N.A. Siewers V. Nielsen J. Advanced biofuel production by the yeast saccharomyces cerevisiae Curr. Opin. Chem. Biol. 2013 17 480 488 10.1016/j.cbpa.2013.03.036 23628723 

  12. 12. Mohd Azhar S.H. Abdulla R. Jambo S.A. Marbawi H. Gansau J.A. Mohd Faik A.A. Rodrigues K.F. Yeasts in sustainable bioethanol production: A review Biochem. Biophys. Rep. 2017 10 52 61 10.1016/j.bbrep.2017.03.003 29114570 

  13. 13. Lee Y.G. Jin Y.S. Cha Y.L. Seo J.H. Bioethanol production from cellulosic hydrolysates by engineered industrial saccharomyces cerevisiae Bioresour. Technol. 2017 228 355 361 10.1016/j.biortech.2016.12.042 28088640 

  14. 14. Stanley D. Bandara A. Fraser S. Chambers P.J. Stanley G.A. The ethanol stress response and ethanol tolerance of saccharomyces cerevisiae J. Appl. Microbiol. 2010 109 13 24 10.1111/j.1364-5072.2009.04657.x 20070446 

  15. 15. Swidah R. Wang H. Reid P.J. Ahmed H.Z. Pisanelli A.M. Persaud K.C. Grant C.M. Ashe M.P. Butanol production in s. Cerevisiae via a synthetic abe pathway is enhanced by specific metabolic engineering and butanol resistance Biotechnol. Biofuels 2015 8 97 10.1186/s13068-015-0281-4 26175798 

  16. 16. Matsuda F. Ishii J. Kondo T. Ida K. Tezuka H. Kondo A. Increased isobutanol production in saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance Microb. Cell Fact. 2013 12 119 10.1186/1475-2859-12-119 24305546 

  17. 17. Lee W.H. Seo S.O. Bae Y.H. Nan H. Jin Y.S. Seo J.H. Isobutanol production in engineered saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes Bioprocess. Biosyst. Eng. 2012 35 1467 1475 10.1007/s00449-012-0736-y 22543927 

  18. 18. Kim S.J. Seo S.O. Jin Y.S. Seo J.H. Production of 2,3-butanediol by engineered saccharomyces cerevisiae Bioresour. Technol. 2013 146 274 281 10.1016/j.biortech.2013.07.081 23941711 

  19. 19. Tamakawa H. Mita T. Yokoyama A. Ikushima S. Yoshida S. Metabolic engineering of candida utilis for isopropanol production Appl. Microbiol. Biotechnol. 2013 97 6231 6239 10.1007/s00253-013-4964-0 23674152 

  20. 20. Siripong W. Wolf P. Kusumoputri T.P. Downes J.J. Kocharin K. Tanapongpipat S. Runguphan W. Metabolic engineering of pichia pastoris for production of isobutanol and isobutyl acetate Biotechnol. Biofuels 2018 11 1 10.1186/s13068-017-1003-x 29321810 

  21. 21. Mattanovich D. Branduardi P. Dato L. Gasser B. Sauer M. Porro D. Recombinant protein production in yeasts Methods Mol. Biol. 2012 824 329 358 22160907 

  22. 22. Nandy S.K. Srivastava R.K. A review on sustainable yeast biotechnological processes and applications Microbiol. Res. 2018 207 83 90 10.1016/j.micres.2017.11.013 29458873 

  23. 23. Owens D.R. Landgraf W. Schmidt A. Bretzel R.G. Kuhlmann M.K. The emergence of biosimilar insulin preparations―A cause for concern? Diabetes Technol. Ther. 2012 14 989 996 10.1089/dia.2012.0105 23046400 

  24. 24. Kumar R. Kumar P. Yeast-based vaccines: New perspective in vaccine development and application FEMS Yeast Res. 2019 19 10.1093/femsyr/foz007 30668686 

  25. 25. Syed Y.Y. Dtap5-hb-ipv-hib vaccine (vaxelis((r))): A review of its use in primary and booster vaccination Paediatr. Drugs 2017 19 69 80 10.1007/s40272-016-0208-y 28035545 

  26. 26. Liu Z. Tyo K.E. Martinez J.L. Petranovic D. Nielsen J. Different expression systems for production of recombinant proteins in saccharomyces cerevisiae Biotechnol. Bioeng. 2012 109 1259 1268 10.1002/bit.24409 22179756 

  27. 27. Gerngross T.U. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi Nat. Biotechnol. 2004 22 1409 1414 10.1038/nbt1028 15529166 

  28. 28. Mokdad-Gargouri R. Abdelmoula-Soussi S. Hadiji-Abbes N. Amor I.Y. Borchani-Chabchoub I. Gargouri A. Yeasts as a tool for heterologous gene expression Methods Mol. Biol. 2012 824 359 370 22160908 

  29. 29. Loureiro V. Malfeito-Ferreira M. Spoilage yeasts in the wine industry Int. J. Food Microbiol. 2003 86 23 50 10.1016/S0168-1605(03)00246-0 12892920 

  30. 30. Varela C. Borneman A.R. Yeasts found in vineyards and wineries Yeast 2017 34 111 128 10.1002/yea.3219 27813152 

  31. 31. Dias L. Dias S. Sancho T. Stender H. Querol A. Malfeito-Ferreira M. Loureiro V. Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol Food Microbiol. 2003 20 567 574 10.1016/S0740-0020(02)00152-1 

  32. 32. Rodrigues N. Goncalves G. Pereira-da-Silva S. Malfeito-Ferreira M. Loureiro V. Development and use of a new medium to detect yeasts of the genera dekkera/brettanomyces J. Appl. Microbiol. 2001 90 588 599 10.1046/j.1365-2672.2001.01275.x 11309071 

  33. 33. Berbegal C. Spano G. Fragasso M. Grieco F. Russo P. Capozzi V. Starter cultures as biocontrol strategy to prevent brettanomyces bruxellensis proliferation in wine Appl. Microbiol. Biotechnol. 2018 102 569 576 10.1007/s00253-017-8666-x 29189899 

  34. 34. Schopp L.M. Lee J. Osborne J.P. Chescheir S.C. Edwards C.G. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by brettanomyces bruxellensis J. Agric. Food Chem. 2013 61 11610 11617 10.1021/jf403440k 24219184 

  35. 35. Steensels J. Daenen L. Malcorps P. Derdelinckx G. Verachtert H. Verstrepen K.J. Brettanomyces yeasts―From spoilage organisms to valuable contributors to industrial fermentations Int. J. Food Microbiol. 2015 206 24 38 10.1016/j.ijfoodmicro.2015.04.005 25916511 

  36. 36. Obi C. Brewery contaminants, challenges and remedies―A review J. Microbiol. 2018 31 3926 3940 

  37. 37. Suzuki K. 125th anniversary review: Microbiological instability of beer caused by spoilage bacteria J. Inst. Brew. 2011 117 131 155 10.1002/j.2050-0416.2011.tb00454.x 

  38. 38. Hollerova I. Kubizniakova P. Monitoring gram positive bacterial contamination in czech breweries J. Inst. Brew. 2001 107 355 358 10.1002/j.2050-0416.2001.tb00104.x 

  39. 39. Simpson W.J. Ionophoric action of trans-isohumulone on lactobacillus brevis Microbiology 1993 139 1041 1045 10.1099/00221287-139-5-1041 

  40. 40. Simpson W.J. Cambridge prize lecture. Studies on the sensitivity of lactic acid bacteria to hop bitter acids J. Inst. Brew. 1993 99 405 411 10.1002/j.2050-0416.1993.tb01180.x 

  41. 41. Simpson W.J. Fernandez J.L. Mechanism of resistance of lactic acid bacteria to trans-isohumulone J. Am. Soc. Brew. Chem. 1994 52 9 11 10.1094/ASBCJ-52-0009 

  42. 42. Iijima K. Suzuki K. Asano S. Ogata T. Kitagawa Y. Horc, a hop-resistance related protein, presumably functions in homodimer form Biosci. Biotechnol. Biochem. 2009 73 1880 1882 10.1271/bbb.90189 19661712 

  43. 43. Iijima K. Suzuki K. Ozaki K. Yamashita H. Horc confers beer-spoilage ability on hop-sensitive lactobacillus brevis abbc45cc J. Appl. Microbiol. 2006 100 1282 1288 10.1111/j.1365-2672.2006.02869.x 16696675 

  44. 44. Vriesekoop F. Krahl M. Hucker B. Menz G. 125th anniversary review: Bacteria in brewing: The good, the bad and the ugly J. Inst. Brew. 2012 118 335 345 10.1002/jib.49 

  45. 45. Lin J. Cao Y. Sun J. Lu J. Monitoring spoilage bacteria and wild yeasts in eastern chinese breweries J. Am. Soc. Brew. Chem. 2008 66 43 47 10.1094/ASBCJ-2007-1219-01 

  46. 46. Thelen K. Beimfohr C. Snaidr J. Evaluation study of the frequency of different beer-spoiling bacteria using the vit analysis Tech. Q. Master Brew. Assoc. Am 2006 43 31 35 

  47. 47. Hussein H.S. Brasel J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals Toxicology 2001 167 101 134 10.1016/S0300-483X(01)00471-1 11567776 

  48. 48. Rodriguez-Carrasco Y. Fattore M. Albrizio S. Berrada H. Manes J. Occurrence of fusarium mycotoxins and their dietary intake through beer consumption by the european population Food Chem. 2015 178 149 155 10.1016/j.foodchem.2015.01.092 25704695 

  49. 49. Wolf-Hall C.E. Mold and mycotoxin problems encountered during malting and brewing Int. J. Food Microbiol. 2007 119 89 94 10.1016/j.ijfoodmicro.2007.07.030 17727998 

  50. 50. Piacentini K.C. Savi G.D. Olivo G. Scussel V.M. Quality and occurrence of deoxynivalenol and fumonisins in craft beer Food Control. 2015 50 925 929 10.1016/j.foodcont.2014.10.038 

  51. 51. Habler K. Geissinger C. Hofer K. Schuler J. Moghari S. Hess M. Gastl M. Rychlik M. Fate of fusarium toxins during brewing J. Agric. Food Chem. 2017 65 190 198 10.1021/acs.jafc.6b04182 27931101 

  52. 52. Vegi A. Schwarz P. Wolf-Hall C.E. Quantification of tri5 gene, expression, and deoxynivalenol production during the malting of barley Int. J. Food Microbiol. 2011 150 150 156 10.1016/j.ijfoodmicro.2011.07.032 21871683 

  53. 53. Reiss J. Influence of the mycotoxins aflatoxin b1, rubratoxin b, patulin and diacetoxyscirpenol on the fermentation activity of baker’s yeast Mycopathol. Mycol. Appl. 1973 51 337 345 10.1007/BF02057804 4588494 

  54. 54. Klosowski G. Mikulski D. The effect of raw material contamination with mycotoxins on the composition of alcoholic fermentation volatile by-products in raw spirits Bioresour. Technol. 2010 101 9723 9727 10.1016/j.biortech.2010.07.085 20709541 

  55. 55. Lopes M.L. Paulillo S.C.d.L. Godoy A. Cherubin R.A. Lorenzi M.S. Giometti F.H.C. Bernardino C.D. Amorim Neto H.B.d. Amorim H.V.d. Ethanol production in brazil: A bridge between science and industry Braz. J. Microbiol. 2016 47 Suppl. S1 64 76 10.1016/j.bjm.2016.10.003 27818090 

  56. 56. Bayrock D.P. Ingledew W.M. Inhibition of yeast by lactic acid bacteria in continuous culture: Nutrient depletion and/or acid toxicity? J. Ind. Microbiol. Biotechnol. 2004 31 362 368 10.1007/s10295-004-0156-3 15257443 

  57. 57. Narendranath N.V. Hynes S.H. Thomas K.C. Ingledew W.M. Effects of lactobacilli on yeast-catalyzed ethanol fermentations Appl. Environ. Microbiol. 1997 63 4158 4163 10.1128/AEM.63.11.4158-4163.1997 9361399 

  58. 58. de Souza Liberal A.T. Basilio A.C. do Monte Resende A. Brasileiro B.T. da Silva-Filho E.A. de Morais J.O. Simoes D.A. de Morais M.A. Jr. Identification of dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation J. Appl. Microbiol. 2007 102 538 547 10.1111/j.1365-2672.2006.03082.x 17241360 

  59. 59. Abbott D.A. Hynes S.H. Ingledew W.M. Growth rates of dekkera/brettanomyces yeasts hinder their ability to compete with saccharomyces cerevisiae in batch corn mash fermentations Appl. Microbiol. Biotechnol. 2005 66 641 647 10.1007/s00253-004-1769-1 15538553 

  60. 60. Ciani M. Maccarelli F. Fatichenti F. Growth and fermentation behaviour of brettanomyces/dekkera yeasts under different conditions of aerobiosis World J. Microbiol. Biotechnol. 2003 19 419 422 10.1023/A:1023950803858 

  61. 61. Beckner M. Ivey M.L. Phister T.G. Microbial contamination of fuel ethanol fermentations Lett. Appl. Microbiol. 2011 53 387 394 10.1111/j.1472-765X.2011.03124.x 21770989 

  62. 62. Bassi A.P.G. Meneguello L. Paraluppi A.L. Sanches B.C.P. Ceccato-Antonini S.R. Interaction of saccharomyces cerevisiae-lactobacillus fermentum-dekkera bruxellensis and feedstock on fuel ethanol fermentation Lett. Appl. Microbiol. 2018 111 1661 1672 10.1007/s10482-018-1056-2 

  63. 63. Pena-Moreno I.C. Castro Parente D. da Silva J.M. Andrade Mendonca A. Rojas L.A.V. de Morais Junior M.A. de Barros Pita W. Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast dekkera bruxellensis J. Ind. Microbiol. Biotechnol. 2019 46 209 220 10.1007/s10295-018-2118-1 30539327 

  64. 64. Elshaghabee F.M. Bockelmann W. Meske D. de Vrese M. Walte H.G. Schrezenmeir J. Heller K.J. Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions Front. Microbiol. 2016 7 47 10.3389/fmicb.2016.00047 26858714 

  65. 65. Amorim H.V. Lopes M.L. de Castro Oliveira J.V. Buckeridge M.S. Goldman G.H. Scientific challenges of bioethanol production in brazil Appl. Microbiol. Biotechnol. 2011 91 1267 1275 10.1007/s00253-011-3437-6 21735264 

  66. 66. Tiukova I. Eberhard T. Passoth V. Interaction of lactobacillus vini with the ethanol-producing yeasts dekkera bruxellensis and saccharomyces cerevisiae Biotechnol. Appl. Biochem. 2014 61 40 44 10.1002/bab.1135 23772864 

  67. 67. Santos M.T. Yokoya F. Characteristics of yeast cell flocculation by lactobacillus fermentum J. Ferment. Bioeng. 1993 75 151 154 10.1016/0922-338X(93)90228-Z 

  68. 68. Carvalho-Netto O.V. Carazzolle M.F. Mofatto L.S. Teixeira P.J. Noronha M.F. Calderon L.A. Mieczkowski P.A. Argueso J.L. Pereira G.A. Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production Microb. Cell Fact. 2015 14 13 10.1186/s12934-015-0196-6 25633848 

  69. 69. Basso L.C. de Amorim H.V. de Oliveira A.J. Lopes M.L. Yeast selection for fuel ethanol production in brazil FEMS Yeast Res. 2008 8 1155 1163 10.1111/j.1567-1364.2008.00428.x 18752628 

  70. 70. Costa M.A.S. Cerri B.C. Ceccato-Antonini S.R. Ethanol addition enhances acid treatment to eliminate lactobacillus fermentum from the fermentation process for fuel ethanol production Lett. Appl. Microbiol. 2018 66 77 85 10.1111/lam.12819 29108112 

  71. 71. Barth D. de Souza Monteiro A.R. da Costa M.M. Virkajarvi I. Sacon V. Wilhelmsom A. Desinfix tm 135 in fermentation process for bioethanol production Braz. J. Microbiol. 2014 45 323 325 10.1590/S1517-83822014000100046 24948951 

  72. 72. Broda M. Grajek W. Ammonia disinfection of corn grains intended for ethanol fermentation Acta Sci. Pol. Technol. Aliment. 2009 8 33 38 

  73. 73. Salvi D.A. Aita G.M. Robert D. Bazan V. Ethanol production from sorghum by a dilute ammonia pretreatment J. Ind. Microbiol. Biotechnol. 2010 37 27 34 10.1007/s10295-009-0645-5 19795143 

  74. 74. Narendranath N.V. Thomas K.C. Ingledew W.M. Urea hydrogen peroxide reduces the numbers of lactobacilli, nourishes yeast, and leaves no residues in the ethanol fermentation Appl. Environ. Microbiol. 2000 66 4187 4192 10.1128/AEM.66.10.4187-4192.2000 11010858 

  75. 75. Chang I.S. Kim B.H. Shin P.K. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation Appl. Environ. Microbiol. 1997 63 1 6 10.1128/AEM.63.1.1-6.1997 8979332 

  76. 76. Meneghin S.P. Reis F.C. de Almeida P.G. Ceccato-Antonini S.R. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation Braz. J. Microbiol. 2008 39 337 343 10.1590/S1517-83822008000200026 24031227 

  77. 77. Oliva-Neto P.-d. Yokoya F. Effect of 3,4,4′-trichlorocarbanilide on growth of lactic acid bacteria contaminants in alcoholic fermentation Bioresour. Technol. 1998 63 17 21 10.1016/S0960-8524(97)00092-8 

  78. 78. Santos M.C. Nunes C. Saraiva J.A. Coimbra M.A. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations Eur. Food Res. Technol. 2012 234 1 12 10.1007/s00217-011-1614-6 

  79. 79. Morgan S.C. Haggerty J.J. Johnston B. Jiranek V. Durall D.M. Response to sulfur dioxide addition by two commercial saccharomyces cerevisiae strains Fermentation 2019 5 69 10.3390/fermentation5030069 

  80. 80. Stevenson D.D. Simon R.A. Sensitivity to ingested metabisulfites in asthmatic subjects J. Allergy Clin. Immunol. 1981 68 26 32 10.1016/0091-6749(81)90119-6 7240597 

  81. 81. Threlfall R.T. Morris J.R. Using dimethyldicarbonate to minimize sulfur dioxide for prevention of fermentation from excessive yeast contamination in juice and semi-sweet wine J. Food Sci. 2002 67 2758 2762 10.1111/j.1365-2621.2002.tb08811.x 

  82. 82. Stroppa C.T. Andrietta M.G.S. Andrietta S.R. Steckelberg C. Serra G. Use of penicillin and monensin to control bacterial contamination of brazilian alcohol fermentations Int. Sugar J. 2000 102 78 82 

  83. 83. Aquarone E. Penicillin and tetracycline as contamination control agents in alcoholic fermentation of sugar cane molasses Appl. Microbiol. 1960 8 263 268 10.1128/AEM.8.5.263-268.1960 13793995 

  84. 84. Bayrock D.P. Thomas K.C. Ingledew W.M. Control of lactobacillus contaminants in continuous fuel ethanol fermentations by constant or pulsed addition of penicillin g Appl. Microbiol. Biotechnol. 2003 62 498 502 10.1007/s00253-003-1324-5 12743751 

  85. 85. Bischoff K.M. Liu S. Leathers T.D. Worthington R.E. Rich J.O. Modeling bacterial contamination of fuel ethanol fermentation Biotechnol. Bioeng. 2009 103 117 122 10.1002/bit.22244 19148876 

  86. 86. Hynes S.H. Kjarsgaard D.M. Thomas K.C. Ingledew W.M. Use of virginiamycin to control the growth of lactic acid bacteria during alcohol fermentation J. Ind. Microbiol. Biotechnol. 1997 18 284 291 10.1038/sj.jim.2900381 9172435 

  87. 87. Murphree C.A. Heist E.P. Moe L.A. Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the united states Curr. Microbiol. 2014 69 277 285 10.1007/s00284-014-0583-y 24748439 

  88. 88. Gyawali R. Ibrahim S.A. Natural products as antimicrobial agents Food Control. 2014 46 412 429 10.1016/j.foodcont.2014.05.047 

  89. 89. Lucera A. Costa C. Conte A. Del Nobile M.A. Food applications of natural antimicrobial compounds Front. Microbiol. 2012 3 287 10.3389/fmicb.2012.00287 23060862 

  90. 90. Newman D.J. Cragg G.M. Natural products as sources of new drugs from 1981 to 2014 J. Nat. Prod. 2016 79 629 661 10.1021/acs.jnatprod.5b01055 26852623 

  91. 91. Salam A.M. Quave C.L. Opportunities for plant natural products in infection control Curr. Opin. Microbiol. 2018 45 189 194 10.1016/j.mib.2018.08.004 30218951 

  92. 92. Sakamoto K. Konings W.N. Beer spoilage bacteria and hop resistance Int. J. Food Microbiol. 2003 89 105 124 10.1016/S0168-1605(03)00153-3 14623377 

  93. 93. Muthaiyan A. Limayem A. Ricke S.C. Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations Prog. Energy Combust. Sci. 2011 37 351 370 10.1016/j.pecs.2010.06.005 

  94. 94. Liu Q. Meng X. Li Y. Zhao C.N. Tang G.Y. Li H.B. Antibacterial and antifungal activities of spices Int. J. Mol. Sci. 2017 18 10.3390/ijms18061283 

  95. 95. Alves M.J. Ferreira I.C. Dias J. Teixeira V. Martins A. Pintado M. A review on antimicrobial activity of mushroom (basidiomycetes) extracts and isolated compounds Planta Med. 2012 78 1707 1718 10.1055/s-0032-1315370 23023950 

  96. 96. Bala N. Aitken E.A. Cusack A. Steadman K.J. Antimicrobial potential of australian macrofungi extracts against foodborne and other pathogens Phytother. Res. 2012 26 465 469 10.1002/ptr.3563 21735503 

  97. 97. Valverde M.E. Hernandez-Perez T. Paredes-Lopez O. Edible mushrooms: Improving human health and promoting quality life Int. J. Microbiol. 2015 2015 376387 10.1155/2015/376387 25685150 

  98. 98. Taofiq O. Heleno S.A. Calhelha R.C. Alves M.J. Barros L. Barreiro M.F. Gonzalez-Paramas A.M. Ferreira I.C. Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties Molecules 2016 21 10.3390/molecules21101372 

  99. 99. Gil G. del Monaco S. Cerrutti P. Galvagno M. Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts Biotechnol. Lett. 2004 26 569 574 10.1023/B:BILE.0000021957.37426.9b 15168856 

  100. 100. Haris S. Fang C. Bastidas-Oyanedel J.R. Prather K.J. Schmidt J.E. Thomsen M.H. Natural antibacterial agents from arid-region pretreated lignocellulosic biomasses and extracts for the control of lactic acid bacteria in yeast fermentation AMB Express 2018 8 127 10.1186/s13568-018-0654-8 30083790 

  101. 101. Brul S. Coote P. Preservative agents in foods. Mode of action and microbial resistance mechanisms Int. J. Food Microbiol. 1999 50 1 17 10.1016/S0168-1605(99)00072-0 

  102. 102. Sang Y. Blecha F. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics Anim. Health Res. Rev. 2008 9 227 235 10.1017/S1466252308001497 18983725 

  103. 103. Bischoff K.M. Skinner-Nemec K.A. Leathers T.D. Antimicrobial susceptibility of lactobacillus species isolated from commercial ethanol plants J. Ind. Microbiol. Biotechnol. 2007 34 739 744 10.1007/s10295-007-0250-4 17726620 

  104. 104. Muller-Auffermann K. Grijalva F. Jacob F. Hutzler M. Nisin and its usage in breweries: A review and discussion J. Inst. Brew. 2015 121 309 319 10.1002/jib.233 

  105. 105. Ogden K. Nisin: A bacteriocin with a potential use in brewing J. Inst. Brew. 1986 92 379 383 10.1002/j.2050-0416.1986.tb04427.x 

  106. 106. Radler F. Possible use of nisin in winemaking. I. Action of nisin against lactic acid bacteria and wine yeasts in solid and liquid media Am. J. Enol. Vitic. 1990 41 1 6 

  107. 107. Furfaro L.L. Payne M.S. Chang B.J. Bacteriophage therapy: Clinical trials and regulatory hurdles Front. Cell Infect. Microbiol. 2018 8 376 10.3389/fcimb.2018.00376 30406049 

  108. 108. Roach D.R. Khatibi P.A. Bischoff K.M. Hughes S.R. Donovan D.M. Bacteriophage-encoded lytic enzymes control growth of contaminating lactobacillus found in fuel ethanol fermentations Biotechnol. Biofuels 2013 6 20 10.1186/1754-6834-6-20 23390890 

  109. 109. Azam A.H. Tanji Y. Bacteriophage-host arm race: An update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy Appl. Microbiol. Biotechnol. 2019 103 2121 2131 10.1007/s00253-019-09629-x 30680434 

  110. 110. Ribelles P. Rodriguez I. Suarez J.E. Lysa2, the lactobacillus casei bacteriophage a2 lysin is an endopeptidase active on a wide spectrum of lactic acid bacteria Appl. Microbiol. Biotechnol. 2012 94 101 110 10.1007/s00253-011-3588-5 21952940 

  111. 111. Khatibi P.A. Roach D.R. Donovan D.M. Hughes S.R. Bischoff K.M. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce lactobacillus contamination during fermentation Biotechnol. Biofuels 2014 7 104 10.1186/1754-6834-7-104 

  112. 112. Kim J.S. Daum M.A. Jin Y.S. Miller M.J. Yeast derived lysa2 can control bacterial contamination in ethanol fermentation Viruses 2018 10 10.3390/v10060281 

  113. 113. Rasmussen M.L. Koziel J.A. Jane J.L. Pometto A.L. 3rd Reducing bacterial contamination in fuel ethanol fermentations by ozone treatment of uncooked corn mash J. Agric. Food Chem. 2015 63 5239 5248 10.1021/acs.jafc.5b00563 25966035 

  114. 114. Mahboubi A. Cayli B. Bulkan G. Doyen W. De Wever H. Taherzadeh M.J. Removal of bacterial contamination from bioethanol fermentation system using membrane bioreactor Fermentation 2018 4 88 10.3390/fermentation4040088 

  115. 115. Fernandez de Ullivarri M. Mendoza L.M. Raya R.R. Killer yeasts as biocontrol agents of spoilage yeasts and bacteria isolated from wine Proceedings of the BIO Web of Conferences Mendoza, Argentina 9?14 November 2014 Volume 3 02001 

  116. 116. Shaw A.J. Lam F.H. Hamilton M. Consiglio A. MacEwen K. Brevnova E.E. Greenhagen E. LaTouf W.G. South C.R. van Dijken H. Metabolic engineering of microbial competitive advantage for industrial fermentation processes Science 2016 353 583 586 10.1126/science.aaf6159 27493184 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로