$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Buffered Oxide Etchant Post-Treatment of a Silicon Nanofilm for Low-Cost and Performance-Enhanced Chemical Sensors

ACS applied materials & interfaces, v.12 no.33, 2020년, pp.37128 - 37136  

Gao, Min (Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , South Korea) ,  Zhao, Zhi-Jun (Nano-Convergence Mechanical System ResearchCenter , Korea Institute of Machinery and Materials , Daejeon 34113 , South Korea) ,  Kim, Hyeonggyun (Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , South Korea) ,  Jin, Mingliang (Institute for Future , Qingdao University , Ningxia Road 308 , Qingdao 266071 , China) ,  Li, Panpan (Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , South Korea) ,  Kim, Taehwan (Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , So) ,  Kang, Kyungnam ,  Cho, Incheol ,  Jeong, Jun-Ho ,  Park, Inkyu

Abstract AI-Helper 아이콘AI-Helper

The high surface-to-volume ratio of nanostructured materials is the key factor for excellent performance when applied to chemical sensors. In order to achieve this by a facile and low-cost fabrication strategy, buffered oxide etchant (BOE) treatment of a silicon (Si)-based sensor was proposed. An n+...

Keyword

참고문헌 (42)

  1. Potyrailo, Radislav A.. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chemical reviews, vol.116, no.19, 11877-11923.

  2. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials Jian Y. 12 2020 

  3. Broza, Yoav Y., Zhou, Xi, Yuan, Miaomiao, Qu, Danyao, Zheng, Youbing, Vishinkin, Rotem, Khatib, Muhammad, Wu, Weiwei, Haick, Hossam. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chemical reviews, vol.119, no.22, 11761-11817.

  4. Peng, Fei, Su, Yuanyuan, Zhong, Yiling, Fan, Chunhai, Lee, Shuit-Tong, He, Yao. Silicon Nanomaterials Platform for Bioimaging, Biosensing, and Cancer Therapy. Accounts of chemical research, vol.47, no.2, 612-623.

  5. Gao, Anran, Lu, Na, Dai, Pengfei, Li, Tie, Pei, Hao, Gao, Xiuli, Gong, Yibin, Wang, Yuelin, Fan, Chunhai. Silicon-Nanowire-Based CMOS-Compatible Field-Effect Transistor Nanosensors for Ultrasensitive Electrical Detection of Nucleic Acids. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.9, 3974-3978.

  6. Chen, K.I., Li, B.R., Chen, Y.T.. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today, vol.6, no.2, 131-154.

  7. Cui, Yi, Wei, Qingqiao, Park, Hongkun, Lieber, Charles M.. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, vol.293, no.5533, 1289-1292.

  8. Patolsky, Fernando, Lieber, Charles M.. Nanowire nanosensors. Materials today, vol.8, no.4, 20-28.

  9. Chen, X., Wong, C.K.Y., Yuan, C.A., Zhang, G.. Nanowire-based gas sensors. Sensors and actuators. B, Chemical, vol.177, 178-195.

  10. Ahn, Jae-Hyuk, Yun, Jeonghoon, Choi, Yang-Kyu, Park, Inkyu. Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection. Applied physics letters, vol.104, no.1, 013508-.

  11. Ahn, Jae-Hyuk, Yun, Jeonghoon, Moon, Dong-Il, Choi, Yang-Kyu, Park, Inkyu. Self-heated silicon nanowires for high performance hydrogen gas detection. Nanotechnology, vol.26, no.9, 095501-.

  12. Fahad, Hossain Mohammad, Shiraki, Hiroshi, Amani, Matin, Zhang, Chuchu, Hebbar, Vivek Srinivas, Gao, Wei, Ota, Hiroki, Hettick, Mark, Kiriya, Daisuke, Chen, Yu-Ze, Chueh, Yu-Lun, Javey, Ali. Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors. Science advances, vol.3, no.3, e1602557-.

  13. gy (KAIST), 291 Daehak‐ro, Yuseong‐gu, Daejeon, 305–701, Republic of Koreakn. Electrical Biomolecule Detection Using Nanopatterned Silicon?via Block Copolymer Lithography. Small, vol.10, no.2, 337-343.

  14. Halpern, Jeffrey Mark, Wang, Bin, Haick, Hossam. Controlling the Sensing Properties of Silicon Nanowires via the Bonds Nearest to the Silicon Nanowire Surface. ACS applied materials & interfaces, vol.7, no.21, 11315-11321.

  15. Sainato, Michela, Strambini, Lucanos Marsilio, Rella, Simona, Mazzotta, Elisabetta, Barillaro, Giuseppe. Sub-Parts Per Million NO2 Chemi-Transistor Sensors Based on Composite Porous Silicon/Gold Nanostructures Prepared by Metal-Assisted Etching. ACS applied materials & interfaces, vol.7, no.13, 7136-7145.

  16. Lazzerini, G. M., Strambini, L. M., Barillaro, G.. Addressing Reliability and Degradation of Chemitransistor Sensors by Electrical Tuning of the Sensitivity. Scientific reports, vol.3, 1161-.

  17. Barillaro, G., Lazzerini, G. M., Strambini, L. M.. Modeling of porous silicon junction field effect transistor gas sensors: Insight into NO2 interaction. Applied physics letters, vol.96, no.16, 162105-.

  18. Barillaro, G., Strambini, L.M.. An integrated CMOS sensing chip for NO2 detection. Sensors and actuators. B, Chemical, vol.134, no.2, 585-590.

  19. Yun, Jeonghoon, Jin, Chun Yan, Ahn, Jae-Hyuk, Jeon, Seokwoo, Park, Inkyu. A self-heated silicon nanowire array: selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications. Nanoscale, vol.5, no.15, 6851-.

  20. Shehada, Nisreen, Cancilla, John C., Torrecilla, Jose S., Pariente, Enrique S., Brönstrup, Gerald, Christiansen, Silke, Johnson, Douglas W., Leja, Marcis, Davies, Michael P. A., Liran, Ori, Peled, Nir, Haick, Hossam. Silicon Nanowire Sensors Enable Diagnosis of Patients via Exhaled Breath. ACS nano, vol.10, no.7, 7047-7057.

  21. Paska, Yair, Stelzner, Thomas, Assad, Ossama, Tisch, Ulrike, Christiansen, Silke, Haick, Hossam. Molecular Gating of Silicon Nanowire Field-Effect Transistors with Nonpolar Analytes. ACS nano, vol.6, no.1, 335-345.

  22. Park, Inkyu, Li, Zhiyong, Pisano, Albert P, Williams, R Stanley. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology, vol.21, no.1, 015501-.

  23. Wang, Bin, Cancilla, John C., Torrecilla, Jose S., Haick, Hossam. Artificial Sensing Intelligence with Silicon Nanowires for Ultraselective Detection in the Gas Phase. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.2, 933-938.

  24. Paska, Yair, Haick, Hossam. Interactive Effect of Hysteresis and Surface Chemistry on Gated Silicon Nanowire Gas Sensors. ACS applied materials & interfaces, vol.4, no.5, 2604-2617.

  25. Paska, Yair, Stelzner, Thomas, Christiansen, Silke, Haick, Hossam. Enhanced Sensing of Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect Transistors. ACS nano, vol.5, no.7, 5620-5626.

  26. Park, I., Li, Z., Pisano, A. P., Williams, R. S.. Selective Surface Functionalization of Silicon Nanowires via Nanoscale Joule Heating. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.7, no.10, 3106-3111.

  27. Park, I., Li, Z., Li, X., Pisano, A.P., Williams, R.S.. Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosensors & bioelectronics, vol.22, no.9, 2065-2070.

  28. Choi, Sun, Park, Inkyu, Hao, Zhao, Holman, Hoi-Ying N., Pisano, Albert P.. Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors. Applied physics. A, Materials science & processing, vol.107, no.2, 421-428.

  29. Hobbs, Richard G., Petkov, Nikolay, Holmes, Justin D.. Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms. Chemistry of materials : a publication of the American Chemical Society, vol.24, no.11, 1975-1991.

  30. McAlpine, Michael C., Ahmad, Habib, Wang, Dunwei, Heath, James R.. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature materials, vol.6, no.5, 379-384.

  31. Han, Jin-Woo, Rim, Taiuk, Baek, Chang-Ki, Meyyappan, M.. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor. ACS applied materials & interfaces, vol.7, no.38, 21263-21269.

  32. Gao, Min, Cho, Minkyu, Han, Hyeuk‐Jin, Jung, Yeon Sik, Park, Inkyu. Palladium‐Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing. Small, vol.14, no.10, 1703691-.

  33. Qin, Yuxiang, Wang, Yongyao, Liu, Yi, Zhang, Xiaojuan. KOH post-etching-induced rough silicon nanowire?array for H2 gas sensing application. Nanotechnology, vol.27, no.46, 465502-.

  34. Ozdemir, S., Gole, J.L.. The potential of porous silicon gas sensors. Current opinion in solid state & materials science, vol.11, no.5, 92-100.

  35. Nah, Junghyo, Kumar, S. Bala, Fang, Hui, Chen, Yu-Ze, Plis, Elena, Chueh, Yu-Lun, Krishna, Sanjay, Guo, Jing, Javey, Ali. Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.116, no.17, 9750-9754.

  36. Williams, K.R., Muller, R.S.. Etch rates for micromachining processing. Journal of microelectromechanical systems : a joint IEEE and ASME publication on microstructures, microactuators, microsensors, and microsystems, vol.5, no.4, 256-269.

  37. Willeke, G, Kellermann, K. Crystalline silicon etching in quiescent concentrated aqueous HF solutions. Semiconductor science and technology, vol.11, no.3, 415-421.

  38. Zhao, Zhi-Jun, Ko, Jiwoo, Ahn, Junseong, Bok, Moonjeong, Gao, Min, Hwang, Soon Hyoung, Kang, Hyeok-Joong, Jeon, Sohee, Park, Inkyu, Jeong, Jun-Ho. 3D Layer-By-Layer Pd-Containing Nanocomposite Platforms for Enhancing the Performance of Hydrogen Sensors. ACS sensors, vol.5, no.8, 2367-2377.

  39. Summary and Findings from the NREL/DOE Hydrogen Sensor Workshop. http://www.nrel.gov/docs/fy12osti/55645.pdf (accessed: April 2020). 

  40. Brunetti B, Desimoni E. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharmaceutica analytica acta, vol.6, no.4,

  41. Permissible Exposure Limits-Annotated Tables. https://www.osha.gov/dsg/annotated-pels/ (accessed: April 2020). 

  42. Hassan, K., Uddin, A.S.M.I., Chung, G.S.. Hydrogen sensing properties of Pt/Pd bimetal decorated on highly hydrophobic Si nanowires. International journal of hydrogen energy, vol.41, no.25, 10991-11001.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로