최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Analytical chemistry, v.92 no.16, 2020년, pp.10902 - 10907
Chae, Heelim (Department of Chemistry , Seoul Women’s University , Seoul 01797 , South Korea) , Min, Sein (Department of Chemistry , Seoul Women’s University , Seoul 01797 , South Korea) , Jeong, Hye Jin (Department of Chemistry , Korea Military Academy , Seoul 01805 , South Korea) , Namgoong, Sung Keon (Department of Chemistry , Seoul Women’s University , Seoul 01797 , South Korea) , Oh, Sangwon (Korea Research Institute of Standards and Science , Daejeon 34113 , South Korea) , Kim, Kiwoong , Jeong, Keunhong
Currently, signal amplification by reversible exchange (SABRE) using para-hydrogen is an attractive method of hyperpolarization for overcoming the sensitivity problems of nuclear magnetic resonance (NMR) spectroscopy. Additionally, SABRE, using the spin order of para-hydrogen, can be applied in reac...
Bowers, C. Russell, Weitekamp, Daniel P.. Transformation of Symmetrization Order to Nuclear-Spin Magnetization by Chemical Reaction and Nuclear Magnetic Resonance. Physical review letters, vol.57, no.21, 2645-2648.
Bowers, C. Russell, Weitekamp, D. P.. Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. Journal of the American Chemical Society, vol.109, no.18, 5541-5542.
Iali, Wissam, Roy, Soumya S., Tickner, Ben J., Ahwal, Fadi, Kennerley, Aneurin J., Duckett, Simon B.. Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE). Angewandte Chemie. international edition, vol.58, no.30, 10271-10275.
Eisenberg, Richard. Parahydrogen-induced polarization: a new spin on reactions with molecular hydrogen. Accounts of chemical research, vol.24, no.4, 110-116.
Natterer, Johannes, Bargon, Joachim. Parahydrogen induced polarization. Progress in nuclear magnetic resonance spectroscopy, vol.31, no.4, 293-315.
Maly, Thorsten, Debelouchina, Galia T., Bajaj, Vikram S., Hu, Kan-Nian, Joo, Chan-Gyu, Mak-Jurkauskas, Melody L., Sirigiri, Jagadishwar R., van der Wel, Patrick C. A., Herzfeld, Judith, Temkin, Richard J., Griffin, Robert G.. Dynamic nuclear polarization at high magnetic fields. The Journal of chemical physics, vol.128, no.5, 052211-.
Putilov, Alexey, Antipov, Alexandr, Shepelev, Alexandr, Arakelyan, S., Evlyukhin, A., Kalachev, A., Naumov, A.. The xenon hyperpolarization by alexandrite laser spin exchange optical pumping. The European Physical Journal Conferences, vol.220, 03026-.
Tateishi, Kenichiro, Negoro, Makoto, Nishida, Shinsuke, Kagawa, Akinori, Morita, Yasushi, Kitagawa, Masahiro. Room temperature hyperpolarization of nuclear spins in bulk. Proceedings of the National Academy of Sciences of the United States of America, vol.111, no.21, 7527-7530.
Walker, T. G., Happer, W.. Spin-exchange optical pumping of noble-gas nuclei. Reviews of modern physics, vol.69, no.2, 629-.
Babcock, Earl, Nelson, Ian, Kadlecek, Steve, Driehuys, Bastiaan, Anderson, L. W., Hersman, F. W., Walker, Thad G..
Hybrid Spin-Exchange Optical Pumping of
Koptyug, I. V., Kovtunov, K. V., Burt, S. R., Anwar, M. S., Hilty, C., Han, S.-I., Pines, A., Sagdeev, R. Z.. para-Hydrogen-Induced Polarization in Heterogeneous Hydrogenation Reactions. Journal of the American Chemical Society, vol.129, no.17, 5580-5586.
Duckett, Simon B., Mewis, Ryan E.. Application of Parahydrogen Induced Polarization Techniques in NMR Spectroscopy and Imaging. Accounts of chemical research, vol.45, no.8, 1247-1257.
Rayner, Peter J., Burns, Michael J., Olaru, Alexandra M., Norcott, Philip, Fekete, Marianna, Green, Gary G. R., Highton, Louise A. R., Mewis, Ryan E., Duckett, Simon B.. Delivering strong 1H nuclear hyperpolarization levels and long magnetic lifetimes through signal amplification by reversible exchange. Proceedings of the National Academy of Sciences of the United States of America, vol.114, no.16, E3188-E3194.
Eshuis, Nan, Hermkens, Niels, van Weerdenburg, Bram J. A., Feiters, Martin C., Rutjes, Floris P. J. T., Wijmenga, Sybren S., Tessari, Marco. Toward Nanomolar Detection by NMR Through SABRE Hyperpolarization. Journal of the American Chemical Society, vol.136, no.7, 2695-2698.
Ratajczyk, Tomasz, Gutmann, Torsten, Bernatowicz, Piotr, Buntkowsky, Gerd, Frydel, Jaroslaw, Fedorczyk, Bartlomiej. NMR Signal Enhancement by Effective SABRE Labeling of Oligopeptides. Chemistry : a European journal, vol.21, no.36, 12616-12619.
Iali, Wissam, Rayner, Peter J., Duckett, Simon B.. Using para hydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates. Science advances, vol.4, no.1, eaao6250-.
Hövener, Jan-Bernd, Schwaderlapp, Niels, Borowiak, Robert, Lickert, Thomas, Duckett, Simon B., Mewis, Ryan E., Adams, Ralph W., Burns, Michael J., Highton, Louise A. R., Green, Gary G. R., Olaru, Alexandra, Hennig, Jürgen, von Elverfeldt, Dominik. Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging. Analytical chemistry, vol.86, no.3, 1767-1774.
Richardson, Peter M., Parrott, Andrew J., Semenova, Olga, Nordon, Alison, Duckett, Simon B., Halse, Meghan E.. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy. The Analyst : An International Journal of Analytical and Bioanalytical Science, vol.143, no.14, 3442-3450.
Borowiak, Robert, Schwaderlapp, Niels, Huethe, Frank, Lickert, Thomas, Fischer, Elmar, Bär, Sébastien, Hennig, Jürgen, von Elverfeldt, Dominik, Hövener, Jan-Bernd. A battery-driven, low-field NMR unit for thermally and hyperpolarized samples. Magma : Magnetic resonance materials in physics, biology, and medicine, vol.26, no.5, 491-499.
Jeong, Keunhong, Min, Sein, Chae, Heelim, Namgoong, Sung Keon. Detecting low concentrations of unsaturated C—C bonds by parahydrogen‐induced polarization using an efficient home‐built parahydrogen generator. Magnetic resonance in chemistry : MRC, vol.56, no.11, 1089-1093.
Kim, Kwang Ho, Choi, Joon Weon, Kim, Chang Soo, Jeong, Keunhong. Parahydrogen-induced polarization in the hydrogenation of lignin-derived phenols using Wilkinson’s catalyst. Fuel, vol.255, 115845-.
Jeong, Keunhong, Min, Sein, Chae, Heelim, Namgoong, Sung Keon. Monitoring of hydrogenation by benchtop NMR with parahydrogen‐induced polarization. Magnetic resonance in chemistry : MRC, vol.57, no.1, 44-48.
Gołowicz, Dariusz, Kazimierczuk, Krzysztof, Urbańczyk, Mateusz, Ratajczyk, Tomasz. Monitoring Hydrogenation Reactions using Benchtop 2D NMR with Extraordinary Sensitivity and Spectral Resolution. ChemistryOpen, vol.8, no.2, 196-200.
Tennant, Thomas, Hulme, Matthew C., Robertson, Thomas B.R., Sutcliffe, Oliver B., Mewis, Ryan E.. Benchtop NMR analysis of piperazine‐based drugs hyperpolarised by SABRE. Magnetic resonance in chemistry : MRC, vol.58, no.12, 1151-1159.
Halse, M.E.. Perspectives for hyperpolarisation in compact NMR. Trends in analytical chemistry : TrAC, vol.83, no.1, 76-83.
Robinson, Alastair D., Richardson, Peter M., Halse, Meghan E.. Hyperpolarised 1H-13C Benchtop NMR Spectroscopy. Applied sciences, vol.9, no.6, 1173-.
Semenova, Olga, Richardson, Peter M., Parrott, Andrew J., Nordon, Alison, Halse, Meghan E., Duckett, Simon B.. Reaction Monitoring Using SABRE-Hyperpolarized Benchtop (1 T) NMR Spectroscopy. Analytical chemistry, vol.91, no.10, 6695-6701.
Vázquez-Serrano, Leslie D., Owens, Bridget T., Buriak, Jillian M.. Catalytic olefin hydrogenation using N-heterocyclic carbene–phosphine complexes of iridium. Chemical communications : Chem comm, vol.2002, no.21, 2518-2519.
Mewis, Ryan E., Green, Richard A., Cockett, Martin C. R., Cowley, Michael J., Duckett, Simon B., Green, Gary G. R., John, Richard O., Rayner, Peter J., Williamson, David C.. Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.119, no.4, 1416-1424.
Barskiy, Danila A., Kovtunov, Kirill V., Koptyug, Igor V., He, Ping, Groome, Kirsten A., Best, Quinn A., Shi, Fan, Goodson, Boyd M., Shchepin, Roman V., Coffey, Aaron M., Waddell, Kevin W., Chekmenev, Eduard Y.. The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T). Journal of the American Chemical Society, vol.136, no.9, 3322-3325.
Atkinson, Kevin D., Cowley, Michael J., Elliott, Paul I. P., Duckett, Simon B., Green, Gary G. R., López-Serrano, Joaquín, Whitwood, Adrian C.. Spontaneous Transfer of Parahydrogen Derived Spin Order to Pyridine at Low Magnetic Field. Journal of the American Chemical Society, vol.131, no.37, 13362-13368.
Truong, Milton L., Shi, Fan, He, Ping, Yuan, Bingxin, Plunkett, Kyle N., Coffey, Aaron M., Shchepin, Roman V., Barskiy, Danila A., Kovtunov, Kirill V., Koptyug, Igor V., Waddell, Kevin W., Goodson, Boyd M., Chekmenev, Eduard Y.. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.118, no.48, 13882-13889.
Olaru, A. M., Burns, M. J., Green, G. G. R., Duckett, S. B.. SABRE hyperpolarisation of vitamin B3 as a function of pH. Chemical science, vol.8, no.3, 2257-2266.
Lee, Seong-Joo, Jeong, Keunhong, Shim, Jeong Hyun, Lee, Hyun Joon, Min, Sein, Chae, Heelim, Namgoong, Sung Keon, Kim, Kiwoong. SQUID-based ultralow-field MRI of a hyperpolarized material using signal amplification by reversible exchange. Scientific reports, vol.9, no.1, 12422-.
van Weerdenburg, Bram J. A., Glöggler, Stefan, Eshuis, Nan, Engwerda, A. H. J. (Ton), Smits, Jan M. M., de Gelder, René, Appelt, Stephan, Wymenga, Sybren S., Tessari, Marco, Feiters, Martin C., Blümich, Bernhard, Rutjes, Floris P. J. T.. Ligand effects of NHC–iridium catalysts for signal amplification by reversible exchange (SABRE). Chemical communications : Chem comm, vol.49, no.67, 7388-7390.
Richardson, Peter M., John, Richard O., Parrott, Andrew J., Rayner, Peter J., Iali, Wissam, Nordon, Alison, Halse, Meghan E., Duckett, Simon B.. Quantification of hyperpolarisation efficiency in SABRE and SABRE-Relay enhanced NMR spectroscopy. Physical chemistry chemical physics : PCCP, vol.20, no.41, 26362-26371.
Buckenmaier, K., Rudolph, M., Back, C., Misztal, T., Bommerich, U., Fehling, P., Koelle, D., Kleiner, R., Mayer, H. A., Scheffler, K., Bernarding, J., Plaumann, M.. SQUID-based detection of ultra-low-field multinuclear NMR of substances hyperpolarized using signal amplification by reversible exchange. Scientific reports, vol.7, 13431-.
Tokmic, Kenan, Greer, Rianna B., Zhu, Lingyang, Fout, Alison R.. 13C NMR Signal Enhancement Using Parahydrogen-Induced Polarization Mediated by a Cobalt Hydrogenation Catalyst. Journal of the American Chemical Society, vol.140, no.44, 14844-14850.
Roy, Soumya S., Appleby, Kate M., Fear, Elizabeth J., Duckett, Simon B.. SABRE-Relay: A Versatile Route to Hyperpolarization. The journal of physical chemistry letters, vol.9, no.5, 1112-1117.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.