최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Environmental biology of fishes, v.60 no.1/3, 2001년, pp.77 - 92
Tricas, Timothy C. (Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6988, U.S.A. Present address: Department of Zoology, University of Hawaii at Manoa, Honolulu, HI 96822, U.S.A. (e-mail: tricas@hawaii.edu))
The adaptations of elasmobranch sensory systems can be studied by linking the morphological structure with the natural behavior and ecology of the organism. This paper presents the first step in a ‘neuroecological’ approach to interpret the spatial arrangement of the electrosensory ampullary organs in elasmobranch fishes. A brief review of the structure and function of the ampullae of Lorenzini is provided for interpretation of the organ system morphology in relation to the detection of dipole and uniform electric fields. The spatial projections of canals from discrete ampullary clusters were determined for the barndoor skate, Raja laevis, based upon a published figure in Raschi (1986), and measured directly from the head of the white shark, Carcharodon carcharias. The dorsoventrally flattened body of the skate restricts the projections of long canals to the horizontal plane. There is a distinct difference between dorsal and ventral projection patterns in all groups. Notable within-cluster features include a relatively long canal subgroup in the dorsal superficial ophthalmic (SOd) and dorsal hyoid (HYOd) clusters that are oriented parallel (bidirectionally) to the longitudinal axis of the body. It is postulated that this subgroup of canals may be important for detection and orientation to weak uniform fields. Ventral canal projections in the skate are primarily lateral, with the exception of the hyoid (HYOv) that also projects medially. This wide dispersion may function for the detection of prey located below the body and pectoral fins of the skate, and may also be used for orientation behavior. The mandibular canals located near the margin of the lower jaw (of both study species) are ideally positioned for use during prey manipulation or capture, and possibly for interspecific courtship or biting. The head of the white shark, which lacks the hyoid clusters, is ovoid in cross section and thus ampullary canals can project into three-dimensional space. The SOd and superficial ophthalmic ventral (SOv) clusters show strong rostral, dorsal and lateral projection components, whereas the SOv also detects rostral fields under the snout. In the sagittal plane, the SOv and SOd have robust dorsal projections as well as ventral in the SOv. Most notable are canal projections in the white shark buccal (BUC) ampullary cluster, which has a radial turnstile configuration on the ventrolateral side of the snout. The turnstile design and tilt between orthogonal planes indicates the white shark BUC may function in detection of uniform fields, including magnetically induced electric fields that may be used in orientation behaviors. These data can be used in future neuroecology behavioral performance experiments to (1) test for possible specializations of cluster groups to different natural electric stimuli, (2) the possibility of specialized canal subgroups within a cluster, and (3) test several models of navigation that argue for the use of geomagnetically induced electric cues.
S. Calif. Acad. Sci. Mem. D.G. Ainley 9 109 1985 Ainley, D.G., R.P. Henderson, H.R. Huber, R.J. Boekelheide, S.G. Allen & T.L. McElroy. 1985. Dynamics of white shark/pinniped interactions in the Gulf of Farallones. S. Calif. Acad. Sci. Mem. 9: 109-122.
Env. Biol. Fish. K.L. Barry 56 429 1999 10.1023/A:1007556112449 Barry, K.L. & C.W. Hawryshyn. 1999. Spectral sensitivity of the Hawaiian saddle wrasse, Thalassoma duperrey, and implications for visually mediated behaviour on coral reefs. Env. Biol. Fish. 56: 429-442.
Copeia B. I. Blonder 1988 33 1988 10.2307/1445919 Blonder, B. I. & W. S. Alevizon. 1988. Prey discrimination and electroreception in the stingray Dasyatis Sabina. Copeia 1988: 33-36.
J. Comp. Neurol. D. Bodznick 225 581 1984 10.1002/cne.902250408 Bodznick, D. & A.W. Schmidt. 1984. Somatotopy within the medullary electrosensory nucleus of the skate, Raja erinacea. J. Comp. Neurol. 225: 581-590.
Env. Biol. Fish. B.O. Bratton 20 241 1987 10.1007/BF00005295 Bratton, B.O. & J.L. Ayers. 1987. Observations on the electric discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behavior. Env. Biol. Fish. 20: 241-254.
Mar. Biol. F.G. Carey 106 329 1990 10.1007/BF01344309 Carey, F.G. & J. Scharrold. 1990. Movements of blue sharks (Prionace glauca) in course and depth. Mar. Biol. 106: 329-342.
Y.T. Chu 1979 Monograph of Fishes of China Chu, Y.T. & Q.W. Wen. 1979. A study of the lateral line canals system and that of Lorenzini ampullae and tubules of elasmobranchiate fishes of China. Monograph of Fishes of China, 2, Shanghai Science Technology Press, Shanghai. 132 pp. (in Chinese).
Z. Vergl. Physiol. S. Dijkgraaf 53 187 1966 10.1007/BF00298095 Dijkgraaf, S. & A.J. Kalmijn. 1966. Versuche zur biologischen Bedeutung der Lorenzinischen Ampullen bei den Elasmobranchiern. Z. Vergl. Physiol. 53: 187-194.
Biochem. J. J. Doyle 88 7 1963 10.1042/bj0880007 Doyle, J. 1963. The acid mucopolysaccharides in the glands of Lorenzini of elasmobranch fish. Biochem. J. 88: 7.
Trans. R. Soc. Edin. J.C. Ewart 37 87 1891 10.1017/S008045680003252X Ewart, J.C. & J.C. Mitchell. 1891. On the lateral sense organs of elasmobranchs. II. The sensory canals of the common skate (Raja batis). Trans. R. Soc. Edin. 37: 87-105.
J. Zool. Lond. P. Hernandez 243 737 1997 10.1111/j.1469-7998.1997.tb01973.x Hernandez, P. & P.J. Motta. 1997. Trophic consequences of differential performance: ontogeny of oral jaw-crushing performance in the sheephead, Archosargus probatocephalus (Teleostei, Sparidae) J. Zool. Lond. 243: 737-756.
J. Exp. Zool. Suppl. R.E. Hueter 5 130 1990 10.1002/jez.1402560518 Hueter, R.E. 1990. Adaptations for spatial vision in sharks. J. Exp. Zool. Suppl. 5: 130-141.
J. Exp. Biol. A.J. Kalmijn 55 371 1971 10.1242/jeb.55.2.371 Kalmijn, A.J. 1971. The electric sense of sharks and rays. J. Exp. Biol. 55: 371-383.
A.J. Kalmijn 147 1974 Handbook of Sensory Physiology Kalmijn, A.J. 1974. The detection of electric fields from inanimate and animate sources other than electric organs. pp. 147-200. In: A. Fessard (ed.) Handbook of Sensory Physiology, Vol III/3, Springer-Verlag, Berlin.
A.J. Kalmijn 507 1978 Sensory Biology of Sharks, Skates, and Rays Kalmijn, A.J. 1978. Electric and magnetic sensory world of sharks, skates, and rays. pp. 507-528. In: E.S. Hodgson & R.F. Mathewson (ed.) Sensory Biology of Sharks, Skates, and Rays, Office of Naval Research, U.S. Government Printing Office, Washington, D.C.
Science A.J. Kalmijn 218 916 1982 10.1126/science.7134985 Kalmijn, A.J. 1982. Electric and magnetic field detection in elasmobranch fishes. Science 218: 916-918.
A.J. Kalmijn 525 1984 Comparative Physiology of Sensory Systems Kalmijn, A.J. 1984. Theory of electromagnetic orientation: a further analysis. pp. 525-560. In: L. Bolis, R.D. Keynes & S.H.P. Maddrell (ed.) Comparative Physiology of Sensory Systems, Cambridge University Press, Cambridge.
Acta Physiol. Scand. A.J. Kalmijn 161 Suppl.638 25 1987 Kalmijn, A.J. 1987. Electric and near-field acoustic detection, a comparative study. Acta Physiol. Scand. 161,Suppl. 638: 25-38.
Mar. Biol. A.P. Klimley 117 1 1993 10.1007/BF00346421 Klimley, A.P. 1993. Highly directional swimming by scalloped hammerhead shark, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar. Biol. 117: 1-22.
Trans. R. Soc. Edin. A. Lamont 51 467 1916 10.1017/S0080456800011558 Lamont, A. 1916. The lateral sense organs of elasmobranchs: the ampullary canals of the genus Raia. Trans. R. Soc. Edin. 51: 467-492.
U.S. Fish. Bull. B.J. Le Boeuf 80 891 1982 Le Boeuf, B.J., M. Riedman & R.S. Keyes. 1982. White shark predation on pinnipeds in California coastal waters. U.S. Fish. Bull. 80: 891-895.
Lorenzini, S. 1678, Osservazioni intorno alle Torpedini. vol 1. Firenze. 136 pp.
S. Calif. Acad. Sci. Mem. J.E. McCosker 9 123 1985 McCosker, J.E. 1985. White shark attack behavior: observations of and speculations about predator and prey strategies. S. Calif. Acad. Sci. Mem. 9: 123-135.
McEachran, J.D. & T. Miyake. 1990. Phylogenetic interrelationships of skates: a working hypothesis (Chondrichthyes, Rajoidei). pp. 285-326. In: H.L. Pratt, S.H. Gruber & T. Taniuchi (ed.) Elasmobranchs as Living Resources: Advances in the Biology, Ecology, Systematics, and the Status of the Fisheries, U.S. Department of Commerce, NOAA Technical Report NMFS 90.
Comp. Biochem. Physiol. J.C. Montgomery 79A 189 1984 10.1016/0300-9629(84)90731-X Montgomery, J.C. 1984. Frequency response characteristics of primary and secondary neurons in the electrosensory system of the thornback ray. Comp. Biochem. Physiol. 79A: 189-195.
Amer. Zool. S.A. Moss 17 355 1977 10.1093/icb/17.2.355 Moss, S.A. 1977. Feeding mechanisms in sharks. Amer. Zool. 17: 355-364.
Env. Biol. Fish. P.J. Motta 44 11 1995 10.1007/BF00005904 Motta, P.J., S.F. Norton & J.J. Luczkovich. 1995. Perspectives on the ecomorphology of bony fishes. Env. Biol. Fish. 44: 11-20.
Nature R.W. Murray 187 957 1960 10.1038/187957a0 Murray, R.W. 1960. Electrical sensitivity of the ampullae of Lorenzini. Nature 187: 957.
J. Exp. Biol. R.W. Murray 39 119 1962 10.1242/jeb.39.1.119 Murray, R.W. 1962. The response of the ampullae of Lorenzini in elasmobranchs to electrical stimulation. J. Exp. Biol. 39: 119-128.
Comp. Biochem. Physiol. R.W. Murray 2 65 1961 10.1016/0010-406X(61)90073-1 Murray, R.W. & T.W. Potts. 1961. The composition of endolymph and other body fluids in elasmobranches. Comp. Biochem. Physiol. 2: 65-75.
J. Comp. Neurol. H.W. Norris 47 449 1929 10.1002/cne.900470306 Norris, H.W. 1929. The distribution and innervation of the ampullae of Lorenzini of the dogfish, Squalus acanthias. Some comparisons with conditions in other plagiostomes and corrections of prevalent errors. J. Comp. Neurol. 47: 449-465.
J. Theor. Biol. M.G. Paulin 174 325 1995 10.1006/jtbi.1995.0102 Paulin, M.G. 1995. Electroreception and the compass sense of sharks. J. Theor. Biol. 174: 325-339.
J. Morph. W. Raschi 189 225 1986 10.1002/jmor.1051890303 Raschi, W. 1986. A morphological analysis of the ampullae of Lorenzini in selected skates (Pisces, Rajoidei). J. Morph. 189: 225-247.
U.S. Fish. Bull. T.C. Sciarrotta 75 519 1977 Sciarrotta, T.C. & D.R. Nelson. 1977. Diel behavior of the blue shark, Prionace glauca, near Santa Catalina, California. U.S. Fish. Bull. 75: 519-528.
Journal of Comparative Physiology, A J.A. Sisneros 183 87 1998 10.1007/s003590050237 Sisneros, J.A., T.C. Tricas & C.A. Luer. 1998. Response properties and biological function of the skate electrosensory system during ontogeny. Journal of Comparative Physiology, A 183: 87-99.
Stenonis, N. 1664. De musculis et glandulis observationum specimen cum duabus epistolis quarum una ad guil. Pisonum de anatome Rajae etc., Amstelodami.
W.R. Strong Jr. 401 1996 10.1016/B978-012415031-7/50038-0 Great White Sharks Strong, W.R., Jr., B.D. Bruce, D.R. Nelson & R.D. Murphy. 1996. Population dynamics of white sharks in Spencer Gulf, South Australia. pp. 401-416. In: A.P. Klimley & D.G. Ainley (ed.) Great White Sharks, Academic Press, San Diego.
Copeia T.C. Tricas 1982 948 1982 10.2307/1444104 Tricas, T.C. 1982. Bioelectric-mediated predation by swell sharks Cephaloscyllium ventriosum. Copeia 1982: 948-952.
Proc. Calif. Acad. Sci. T.C. Tricas 43 221 1984 Tricas, T.C. & J.E. McCosker. 1984. Predatory behavior of the white shark, Carcharodon carcharias, and notes on its biology. Proc. Calif. Acad. Sci. 43: 221-238.
J. Comp. Physiol. T.C. Tricas 182 89 1998 10.1007/s003590050161 Tricas, T.C. & J.G. New. 1998. Sensitivity and response dynamics of electrosensory primary afferent neurons to near threshold fields in the round stingray. J. Comp. Physiol. 182: 89-101.
Neuroscience Letters T.C. Tricas 202 129 1995 10.1016/0304-3940(95)12230-3 Tricas, T.C., S.W. Michael & J.A. Sisneros. 1995. Electrosensory optimization to conspecific phasic signals for mating. Neuroscience Letters 202: 129-132.
J. Morphol. R.G Turingan 215 101 1993 10.1002/jmor.1052150202 Turingan, R.G & P.C. Wainwright. 1993. Morphological and functional bases of durophagy in the queen triggerfish, Balistes vetula (Pisces, Tetraodontiformes). J. Morphol. 215: 101-118.
P.C. Wainwright 1994 Ecological morphology Wainwright, P.C. & S.M. Reilly. 1994. Ecological morphology. University of Chicago Press, Chicago. 367 pp.
Env. Biol. Fish. M.W. Westneat 44 263 1995 10.1007/BF00005920 Westneat, M.W. 1995. Phyologenetric systematics and biomechanics in ecomorphology. Env. Biol. Fish. 44: 263-283.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.