최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Notre Dame journal of formal logic, v.40 no.1, 1999년, pp. -
Visser, Albert
초록이 없습니다.
Boolos, G., The Logic of Provability , Cambridge University Press, Cambridge, 1993. Zbl 0891.03004 MR 95c:03038
Hájek, P., and P. Pudlák, Metamathematics of First-Order Arithmetic , Perspectives in Mathematical Logic, Springer, Berlin, 1991. Zbl 0781.03047 MR 94d:03001
de Jongh, D.H.J., Investigations on the Intuitionistic Propositional Calculus , Ph.D. thesis, University of Wisconsin, Madison, 1968.
de Jongh, D.H.J., “The maximality of the intuitionistic predicate calculus with respect to Heyting's Arithmetic,” The Journal of Symbolic Logic , vol. 36 (1970), p. 606.
10.1016/0003-4843(76)90008-5 de Jongh, D.H.J., and C. Smoryński, “Kripke models and the intuitionistic theory of species,” Annals of Mathematical Logic , vol. 9 (1976), pp. 157-86. Zbl 0317.02037 MR 53:5266
Gavrilenko, Yu. V., “Recursive realizability from the intuitionistic point of view,” Soviet Mathematical Doklady , vol. 23 (1981), pp. 9-14. Zbl 0467.03055
10.2307/2586506 Ghilardi, S., “Unification in intuitionistic logic,” The Journal of Symbolic Logic , vol. 64 (1999), pp. 859-80. Zbl 0930.03009 MR 2001g:03020
10.2307/2275765 Ghilardi, S., and M. Zawadowski, “A sheaf representation and duality for finitely presented Heyting algebras,” The Journal of Symbolic Logic , vol. 60 (1995), pp. 911-39. Zbl 0837.03047 MR 96i:03063
Kalsbeek, M.B., An Orey sentence for predicative arithmetic , Technical Report X-89-01, ITLI, University of Amsterdam, Amsterdam, 1989.
Leivant, D., Absoluteness in Intuitionistic Logic , vol. 73, Mathematical Centre Tract, Amsterdam, 1975.
10.1305/ndjfl/1093635833 McCarthy, D. C., “Incompleteness in intuitionistic metamathematics,” The Notre Dame Journal of Formal Logic , vol. 32 (1991), pp. 323-58.
10.1305/ndjfl/1094061860 Montagna, F., and A. Mancini, “A minimal predicative set theory,” The Notre Dame Journal of Formal Logic , vol. 35 (1994), pp. 186-203. Zbl 0816.03023 MR 95h:03117
10.2307/2275175 Pitts, A., “On an interpretation of second order quantification in first order intuitionistic propositional logic,” The Journal of Symbolic Logic , vol. 57 (1992), pp. 33-52. Zbl 0763.03009 MR 93h:03009
10.1070/IM1977v011n03ABEH001731 Plisko, V. E., “The nonarithmeticity of the class of realizable formulas,” Mathematical Izvestya of the USSR , vol. 11 (1977), pp. 453-71. Zbl 0382.03043
10.1070/IM1978v012n03ABEH002005 Plisko, V. E., “Some variants of the notion of realizability for predicate formulas,” Mathematical Izvestya of the USSR , vol. 12 (1978), pp. 588-604. Zbl 0414.03038 MR 80b:03035
10.1070/IM1984v022n02ABEH001444 Plisko, V. E., “Absolute realizability of predicate formulas,” Mathematical Izvestya of the USSR , vol. 22 (1983), pp. 291-308. Zbl 0554.03029 MR 85f:03063
Plisko, V. E., “Modified realizability and predicate logic,” Abstracts of the All Union Conference in Mathematical Logic, Alma Ata , in Russian, 1990. Zbl 0912.03027 MR 99h:03037
10.1007/BF01157440 Plisko, V. E., “Constructive formalization of the Tennenbaum Theorem,” Mathematical Notes , pp. 950-57, 1991. Translated from Matematicheskie Zametki , vol. 48 (1990), pp. 108-18. Zbl 0727.03037
10.1007/BF01247653 Plisko, V. E., “On arithmetic complexity of certain constructive logics,” Mathematical Notes , pp. 701-709, 1993. Translated from Matematicheskie Zametki , vol. 52 (1992), pp. 94-104. Zbl 0787.03055
10.2307/2274231 Pudlák, P., “Cuts, consistency statements and interpretations,” The Journal of Symbolic Logic , vol. 50 (1985), pp. 423-41. Zbl 0569.03024 MR 87m:03087
10.1090/S0002-9947-1953-0055952-4 Rose, G. F., “Propositional calculus and realizability,” Transactions of the American Mathematical Society , vol. 61 (1953), pp. 1-19. Zbl 0053.19901 MR 15,1a
Rybakov, V. V., “Admissibility of logical inference rules,” Studies in Logic, Elsevier, Amsterdam, 1997. Zbl 0872.03002 MR 98i:03035
Tarski, A., A. Mostowski, and R. M. Robinson. Undecidable Theories , North-Holland, Amsterdam, 1953. Zbl 0053.00401 MR 15,384h
Troelstra, A. S., and D. van Dalen, “Constructivism in Mathematics,” vol. 1, Studies in Logic and the Foundations of Mathematics , vol. 121, North-Holland, Amsterdam, 1988. Zbl 0653.03040 MR 90e:03002a
Troelstra, A. S., and D. van Dalen, “Constructivism in Mathematics,” vol. 2, Studies in Logic and the Foundations of Mathematics , vol. 123, North-Holland, Amsterdam, 1988. Zbl 0661.03047 MR 90e:03002b
10.2307/2275064 van Oosten, J., Exercises in Realizability , Ph.D. thesis, Department of Mathematics and Computer Science, University of Amsterdam, Amsterdam, 1991.
10.1007/BF01387763 van Oosten, J., “A semantical proof of de Jongh's Theorem,” Archive for Mathematical Logic , vol. 31 (1991), pp. 105-14. Zbl 0781.03049 MR 93b:03107
Visser, A., Aspects of diagonalization and provability , Ph.D. thesis, Department of Philosophy, Utrecht University, Utrecht, 1981.
10.1016/0003-4843(82)90024-9 Visser, A., “On the completeness principle,” Annals of Mathematical Logic , vol. 22 (1982), pp. 263-95. Zbl 0505.03026 MR 84h:03130
Visser, A., “Evaluation, provably deductive equivalence in Heyting's Arithmetic of substitution instances of propositional formulas,” Technical Report LGPS 4, Department of Philosophy, Utrecht University, Utrecht, 1985.
10.1007/BF00370389 Visser, A., “The formalization of interpretability,” Studia Logica , vol. 51 (1991), pp. 81-105. Zbl 0744.03023 MR 93f:03009
10.1007/BF01387407 Visser, A., “The unprovability of small inconsistency,” Archive for Mathematical Logic , vol. 32 (1993), pp. 275-98. Zbl 0795.03080 MR 94c:03073
Visser, A., Propositional combinations of $\Sigma$-sentences in Heyting's Arithmetic , Logic Group Preprint Series 117, Department of Philosophy, Utrecht University, Utrecht, 1994.
Visser, A., “An overview of interpretability logic,” pp. 307-59 in Advances in Modal Logic , vol. 1, CSLI Lecture Notes, no. 87, edited by M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, CSLI, Stanford, 1998. Zbl 0915.03020 MR 1 688 529
Visser, A., J. van Benthem, D. de Jongh, and G. Renardel de Lavalette, “NNIL, a study in intuitionistic propositional logic,” pp. 289-326 in Modal Logic and Process Algebra, a Bisimulation Perspective , CSLI Lecture Notes, no. 53, edited by A. Ponse, M. de Rijke, and Y. Venema, CSLI, Stanford, 1995. MR 97m:03019
10.1016/0168-0072(87)90066-2 Wilkie, A., and J. B. Paris, “On the scheme of induction for bounded arithmetic formulas,” Annals of Pure and Applied Logic , vol. 35 (1987), pp. 261-302.
10.1007/3-540-63045-7_41 Yavorsky, R. E., “Logical schemes for first-order theories,” Springer LNCS (Yaroslavl '97 volume) , vol. 1234, (1997), pp. 410-18. Zbl 0888.03018 MR 98k:03016
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.