$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Rules and Arithmetics 원문보기

Notre Dame journal of formal logic, v.40 no.1, 1999년, pp. -   

Visser, Albert

초록이 없습니다.

참고문헌 (42)

  1. Boolos, G., The Logic of Provability , Cambridge University Press, Cambridge, 1993. Zbl 0891.03004 MR 95c:03038 

  2. Hájek, P., and P. Pudlák, Metamathematics of First-Order Arithmetic , Perspectives in Mathematical Logic, Springer, Berlin, 1991. Zbl 0781.03047 MR 94d:03001 

  3. de Jongh, D.H.J., Investigations on the Intuitionistic Propositional Calculus , Ph.D. thesis, University of Wisconsin, Madison, 1968. 

  4. de Jongh, D.H.J., “The maximality of the intuitionistic predicate calculus with respect to Heyting's Arithmetic,” The Journal of Symbolic Logic , vol. 36 (1970), p. 606. 

  5. 10.1016/0003-4843(76)90008-5 de Jongh, D.H.J., and C. Smoryński, “Kripke models and the intuitionistic theory of species,” Annals of Mathematical Logic , vol. 9 (1976), pp. 157-86. Zbl 0317.02037 MR 53:5266 

  6. 10.1093/oso/9780198538622.003.0008 de Jongh, D.H.J., and A. Visser, “Embeddings of Heyting algebras,” pp. 187- 213 in Logic: From Foundations to Applications , edited by W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, Clarendon Press, Oxford, 1996. Zbl 0857.03041 MR 98h:03079 

  7. 10.1007/BFb0066773 Friedman, H., “Some applications of Kleene's methods for intuitionistic systems,” pp. 113-70 in Cambridge Summerschool in Mathematical Logic , edited by A.R.D. Mathias and H. Rogers, Springer-Verlag, Berlin, 1973. Zbl 0272.02038 MR 51:12486 

  8. Gavrilenko, Yu. V., “Recursive realizability from the intuitionistic point of view,” Soviet Mathematical Doklady , vol. 23 (1981), pp. 9-14. Zbl 0467.03055 

  9. 10.2307/2586506 Ghilardi, S., “Unification in intuitionistic logic,” The Journal of Symbolic Logic , vol. 64 (1999), pp. 859-80. Zbl 0930.03009 MR 2001g:03020 

  10. 10.2307/2275765 Ghilardi, S., and M. Zawadowski, “A sheaf representation and duality for finitely presented Heyting algebras,” The Journal of Symbolic Logic , vol. 60 (1995), pp. 911-39. Zbl 0837.03047 MR 96i:03063 

  11. Kalsbeek, M.B., An Orey sentence for predicative arithmetic , Technical Report X-89-01, ITLI, University of Amsterdam, Amsterdam, 1989. 

  12. Leivant, D., Absoluteness in Intuitionistic Logic , vol. 73, Mathematical Centre Tract, Amsterdam, 1975. 

  13. 10.1305/ndjfl/1093635833 McCarthy, D. C., “Incompleteness in intuitionistic metamathematics,” The Notre Dame Journal of Formal Logic , vol. 32 (1991), pp. 323-58. 

  14. 10.1305/ndjfl/1094061860 Montagna, F., and A. Mancini, “A minimal predicative set theory,” The Notre Dame Journal of Formal Logic , vol. 35 (1994), pp. 186-203. Zbl 0816.03023 MR 95h:03117 

  15. 10.2307/2275175 Pitts, A., “On an interpretation of second order quantification in first order intuitionistic propositional logic,” The Journal of Symbolic Logic , vol. 57 (1992), pp. 33-52. Zbl 0763.03009 MR 93h:03009 

  16. 10.1070/IM1977v011n03ABEH001731 Plisko, V. E., “The nonarithmeticity of the class of realizable formulas,” Mathematical Izvestya of the USSR , vol. 11 (1977), pp. 453-71. Zbl 0382.03043 

  17. 10.1070/IM1978v012n03ABEH002005 Plisko, V. E., “Some variants of the notion of realizability for predicate formulas,” Mathematical Izvestya of the USSR , vol. 12 (1978), pp. 588-604. Zbl 0414.03038 MR 80b:03035 

  18. 10.1070/IM1984v022n02ABEH001444 Plisko, V. E., “Absolute realizability of predicate formulas,” Mathematical Izvestya of the USSR , vol. 22 (1983), pp. 291-308. Zbl 0554.03029 MR 85f:03063 

  19. Plisko, V. E., “Modified realizability and predicate logic,” Abstracts of the All Union Conference in Mathematical Logic, Alma Ata , in Russian, 1990. Zbl 0912.03027 MR 99h:03037 

  20. 10.1007/BF01157440 Plisko, V. E., “Constructive formalization of the Tennenbaum Theorem,” Mathematical Notes , pp. 950-57, 1991. Translated from Matematicheskie Zametki , vol. 48 (1990), pp. 108-18. Zbl 0727.03037 

  21. 10.1007/BF01247653 Plisko, V. E., “On arithmetic complexity of certain constructive logics,” Mathematical Notes , pp. 701-709, 1993. Translated from Matematicheskie Zametki , vol. 52 (1992), pp. 94-104. Zbl 0787.03055 

  22. 10.2307/2274231 Pudlák, P., “Cuts, consistency statements and interpretations,” The Journal of Symbolic Logic , vol. 50 (1985), pp. 423-41. Zbl 0569.03024 MR 87m:03087 

  23. 10.1090/S0002-9947-1953-0055952-4 Rose, G. F., “Propositional calculus and realizability,” Transactions of the American Mathematical Society , vol. 61 (1953), pp. 1-19. Zbl 0053.19901 MR 15,1a 

  24. Rybakov, V. V., “Admissibility of logical inference rules,” Studies in Logic, Elsevier, Amsterdam, 1997. Zbl 0872.03002 MR 98i:03035 

  25. 10.1007/BFb0066739 Smoryński, C., “Applications of Kripke models,” pp. 324-91 in Metamathematical Investigations of Intuitionistic Arithmetic and Analysis , Springer Lecture Notes 344, edited by A. S. Troelstra, Springer, Berlin, 1973. MR 56:2795 

  26. 10.1007/978-1-4613-8601-8 Smoryński, C., Self-Reference and Modal Logic , Universitext, Springer, New York, 1985. Zbl 0596.03001 MR 88d:03001 

  27. Tarski, A., A. Mostowski, and R. M. Robinson. Undecidable Theories , North-Holland, Amsterdam, 1953. Zbl 0053.00401 MR 15,384h 

  28. Troelstra, A. S., and D. van Dalen, “Constructivism in Mathematics,” vol. 1, Studies in Logic and the Foundations of Mathematics , vol. 121, North-Holland, Amsterdam, 1988. Zbl 0653.03040 MR 90e:03002a 

  29. Troelstra, A. S., and D. van Dalen, “Constructivism in Mathematics,” vol. 2, Studies in Logic and the Foundations of Mathematics , vol. 123, North-Holland, Amsterdam, 1988. Zbl 0661.03047 MR 90e:03002b 

  30. 10.2307/2275064 van Oosten, J., Exercises in Realizability , Ph.D. thesis, Department of Mathematics and Computer Science, University of Amsterdam, Amsterdam, 1991. 

  31. 10.1007/BF01387763 van Oosten, J., “A semantical proof of de Jongh's Theorem,” Archive for Mathematical Logic , vol. 31 (1991), pp. 105-14. Zbl 0781.03049 MR 93b:03107 

  32. Visser, A., Aspects of diagonalization and provability , Ph.D. thesis, Department of Philosophy, Utrecht University, Utrecht, 1981. 

  33. 10.1016/0003-4843(82)90024-9 Visser, A., “On the completeness principle,” Annals of Mathematical Logic , vol. 22 (1982), pp. 263-95. Zbl 0505.03026 MR 84h:03130 

  34. Visser, A., “Evaluation, provably deductive equivalence in Heyting's Arithmetic of substitution instances of propositional formulas,” Technical Report LGPS 4, Department of Philosophy, Utrecht University, Utrecht, 1985. 

  35. 10.1007/BF00370389 Visser, A., “The formalization of interpretability,” Studia Logica , vol. 51 (1991), pp. 81-105. Zbl 0744.03023 MR 93f:03009 

  36. 10.1007/BF01387407 Visser, A., “The unprovability of small inconsistency,” Archive for Mathematical Logic , vol. 32 (1993), pp. 275-98. Zbl 0795.03080 MR 94c:03073 

  37. Visser, A., Propositional combinations of $\Sigma$-sentences in Heyting's Arithmetic , Logic Group Preprint Series 117, Department of Philosophy, Utrecht University, Utrecht, 1994. 

  38. 10.1017/9781316716939.010 Visser, A., “Uniform interpolation and layered bisimulation,” pp. 139-64 in G ödel '96, Logical Foundations of Mathematics, Computer Science and Physics--Kurt G ödel's Legacy , edited by P. Hájek, Springer, Berlin, 1996. Zbl 0854.03026 MR 98g:03026 

  39. Visser, A., “An overview of interpretability logic,” pp. 307-59 in Advances in Modal Logic , vol. 1, CSLI Lecture Notes, no. 87, edited by M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, CSLI, Stanford, 1998. Zbl 0915.03020 MR 1 688 529 

  40. Visser, A., J. van Benthem, D. de Jongh, and G. Renardel de Lavalette, “NNIL, a study in intuitionistic propositional logic,” pp. 289-326 in Modal Logic and Process Algebra, a Bisimulation Perspective , CSLI Lecture Notes, no. 53, edited by A. Ponse, M. de Rijke, and Y. Venema, CSLI, Stanford, 1995. MR 97m:03019 

  41. 10.1016/0168-0072(87)90066-2 Wilkie, A., and J. B. Paris, “On the scheme of induction for bounded arithmetic formulas,” Annals of Pure and Applied Logic , vol. 35 (1987), pp. 261-302. 

  42. 10.1007/3-540-63045-7_41 Yavorsky, R. E., “Logical schemes for first-order theories,” Springer LNCS (Yaroslavl '97 volume) , vol. 1234, (1997), pp. 410-18. Zbl 0888.03018 MR 98k:03016 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로