[해외논문]Novel structures of cyclometallated complexes of palladium(II) derived from terdentate ligands. Crystal and molecular structure of [Pd{C6H4C(H)NCH2CH2CH2NMe2}(X)] (X=Cl, Br, I)
Fernández*, Alberto
(Departamento de Quı́)
,
Urı́a, Patricia
(mica Fundamental, Universidad de La Coruñ)
,
Fernández, Jesús J
(a, E-15071 La Coruñ)
,
López-Torres, Margarita
(a, Spain)
,
Suárez, Antonio
(Departamento de Quı́)
,
Vázquez-Garcı́a, Digna
(mica Fundamental, Universidad de La Coruñ)
,
Pereira, Ma Teresa
(a, E-15071 La Coruñ)
,
Vila*, José
(a, Spain)
,
M
(Departamento de Quı́)
AbstractTreatment of N-(2-chlorobenzylidene)-N,N-dimethyl-1,3-propanediamine (1) and N-(2-bromo-3,4-(MeO)2-benzylidene)-N,N-dimethyl-1,3-propanediamine (20) with tris(dibenzylideneacetone)dipalladium(0) in toluene gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)NCH2CH2CH2NMe2}(Cl)...
AbstractTreatment of N-(2-chlorobenzylidene)-N,N-dimethyl-1,3-propanediamine (1) and N-(2-bromo-3,4-(MeO)2-benzylidene)-N,N-dimethyl-1,3-propanediamine (20) with tris(dibenzylideneacetone)dipalladium(0) in toluene gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)NCH2CH2CH2NMe2}(Cl)] (2) and [Pd{3,4-(MeO)2C6H2C(H)NCH2CH2CH2NMe2}(Br)] (21), respectively, via oxidative addition reaction with the ligand as a C,N,N terdentate ligand. Reaction of 2 with sodium bromide or iodide in an acetone–water mixture gave the cyclometallated analogues of 2, [Pd{C6H4C(H)NCH2CH2CH2NMe2}(Br)] (3) and [Pd{C6H4C(H)NCH2CH2CH2NMe2}(I)] (4), by halogen exchange. The X-ray crystal structures of 2, 3 and 4 were determined and discussed. Treatment of 2, 3, 4 and 21 with tertiary monophosphines in acetone gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)NCH2CH2CH2NMe2}(L)(X)] (6: L=PPh3, X=Cl; 7: L=PPh3, X=Br; 8: L=PPh3, X=I; 9: L=PMePh2, X=Cl; 10: L=PMe2Ph, X=Cl) and [Pd{3,4-(MeO)2C6H2C(H)NCH2CH2CH2NMe2}(L)(Br)] (22: L=PPh3; 23: L=PMePh2; 24: L=PMe2Ph). A fluxional behaviour due to an uncoordinated CH2CH2CH2NMe2 could be determined by variable temperature NMR spectroscopy. Treatment of 2, 3 and 4 with silver trifluoromethanesulfonate followed by reaction with triphenylphosphine gave the mononuclear complex [Pd{C6H4C(H)NCH2CH2CH2NMe2}(PPh3)][F3CSO3] (11) where the Pd–NMe2 bond was retained. Reaction of 2, 3 and 4 with ditertiary diphosphines in a cyclometallated complex–diphosphine 2:1 molar ratio gave the binuclear complexes [{Pd[C6H4C(H)NCH2CH2CH2NMe2](X)}2(μ-L–L)][L–L=PPh2(CH2)4PPh2(dppb) (13, X=Cl; 14, X=Br; 15, X=I; L–L=PPh2(CH2)5PPh2(dpppe): 16, X=Cl; 17, X=Br; 18, X=I) with palladium–NMe2 bond cleavage. Treatment of 2, 3 and 4 with ditertiary diphosphines, in a cyclometallated complex–diphosphine 2:1, molar ratio and AgSO3CF3 gave the binuclear cyclometallated complexes [{Pd[C6H4C(H)NCH2CH2CH2NMe2]}2(μ-L–L)][F3CSO3]2 (11: L–L=PPh2(CH2)4PPh2(dppb), X=Cl; 12: L–L=PPh2(CH2)5PPh2 (dpppe), X=Cl). Reaction of 2 with the ditertiary diphosphine cis-dppe in a cyclometallated complex–diphosphine 1:1 molar ratio followed by treatment with sodium perchlorate gave the mononuclear cyclometallated complex [Pd{C6H4C(H)NCH2CH2CH2NMe2}(cis-PPh2CHCHPPh2–
AbstractTreatment of N-(2-chlorobenzylidene)-N,N-dimethyl-1,3-propanediamine (1) and N-(2-bromo-3,4-(MeO)2-benzylidene)-N,N-dimethyl-1,3-propanediamine (20) with tris(dibenzylideneacetone)dipalladium(0) in toluene gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)NCH2CH2CH2NMe2}(Cl)] (2) and [Pd{3,4-(MeO)2C6H2C(H)NCH2CH2CH2NMe2}(Br)] (21), respectively, via oxidative addition reaction with the ligand as a C,N,N terdentate ligand. Reaction of 2 with sodium bromide or iodide in an acetone–water mixture gave the cyclometallated analogues of 2, [Pd{C6H4C(H)NCH2CH2CH2NMe2}(Br)] (3) and [Pd{C6H4C(H)NCH2CH2CH2NMe2}(I)] (4), by halogen exchange. The X-ray crystal structures of 2, 3 and 4 were determined and discussed. Treatment of 2, 3, 4 and 21 with tertiary monophosphines in acetone gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)NCH2CH2CH2NMe2}(L)(X)] (6: L=PPh3, X=Cl; 7: L=PPh3, X=Br; 8: L=PPh3, X=I; 9: L=PMePh2, X=Cl; 10: L=PMe2Ph, X=Cl) and [Pd{3,4-(MeO)2C6H2C(H)NCH2CH2CH2NMe2}(L)(Br)] (22: L=PPh3; 23: L=PMePh2; 24: L=PMe2Ph). A fluxional behaviour due to an uncoordinated CH2CH2CH2NMe2 could be determined by variable temperature NMR spectroscopy. Treatment of 2, 3 and 4 with silver trifluoromethanesulfonate followed by reaction with triphenylphosphine gave the mononuclear complex [Pd{C6H4C(H)NCH2CH2CH2NMe2}(PPh3)][F3CSO3] (11) where the Pd–NMe2 bond was retained. Reaction of 2, 3 and 4 with ditertiary diphosphines in a cyclometallated complex–diphosphine 2:1 molar ratio gave the binuclear complexes [{Pd[C6H4C(H)NCH2CH2CH2NMe2](X)}2(μ-L–L)][L–L=PPh2(CH2)4PPh2(dppb) (13, X=Cl; 14, X=Br; 15, X=I; L–L=PPh2(CH2)5PPh2(dpppe): 16, X=Cl; 17, X=Br; 18, X=I) with palladium–NMe2 bond cleavage. Treatment of 2, 3 and 4 with ditertiary diphosphines, in a cyclometallated complex–diphosphine 2:1, molar ratio and AgSO3CF3 gave the binuclear cyclometallated complexes [{Pd[C6H4C(H)NCH2CH2CH2NMe2]}2(μ-L–L)][F3CSO3]2 (11: L–L=PPh2(CH2)4PPh2(dppb), X=Cl; 12: L–L=PPh2(CH2)5PPh2 (dpppe), X=Cl). Reaction of 2 with the ditertiary diphosphine cis-dppe in a cyclometallated complex–diphosphine 1:1 molar ratio followed by treatment with sodium perchlorate gave the mononuclear cyclometallated complex [Pd{C6H4C(H)NCH2CH2CH2NMe2}(cis-PPh2CHCHPPh2–
10.1021/jm00076a006 (a) C. Navarro-Ranninger, I. Lopez Solera, J. Rodriguez, J.L. Garcia-Ruano, P.R. Raithby, J.R. Masaguer, C. Alonso, J. Med. Chem. 36 (1993) 3795.
10.1021/ic960050y (b) C. Navarro-Ranninger, I. Lopez-Solera, V.M. Gonzalez, J.M. Perez, A. Alvarez-Valdes, A. Martin, P.R. Raithby, J.R. Masaguer, C. Alonso, Inorg. Chem. 35 (1996) 5181.
10.1039/a906276i J.M. Vila, M.T. Pereira, J.M. Ortigueira, M. Lopez-Torres, D. Lata, M. Grana, A. Suarez, J.J. Fernandez, A. Fernandez, J. Chem. Soc. Dalton Trans. (1999) 4193.
Pregosin 16 1979 31P and 13C NMR of transition metal phosphine complexes
10.1016/0022-328X(94)88201-0 (a) B.A. Markies, A.J. Canty, W. de Graaf, J. Boersma, M.D. Janssen, M.P. Hogerheide,W.J.J. Smeets, A.L. Spek, G. van Koten, J. Organomet. Chem. 482 (1994) 191.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.