최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS applied materials & interfaces, v.12 no.34, 2020년, pp.38563 - 38569
Kim, Ho Jin (School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Lee, Khang June (School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Park, Junghoon (School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Shin, Gwang Hyuk (School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Park, Hamin (School of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea) , Yu, Kyoungsik , Choi, Sung-Yool
Negative photoconductivity (NPC), a reduction in photoconductivity under light illumination, could provide low power consumption and high-speed frequency response. The NPC has been generally observed in low-dimensional materials, which can be easily affected by the trapping of photocarriers. However...
Liu, G Z, Zhao, R, Qiu, J, Jiang, Y C, Gao, J. Negative photoconductivity under visible light illumination in LaAlO3/SrTiO3 heterostructures. Journal of physics. D, applied physics, vol.52, no.9, 095302-.
Biswas, Chandan, Güneş, Fethullah, Loc, Duong Dinh, Lim, Seong Chu, Jeong, Mun Seok, Pribat, Didier, Lee, Young Hee. Negative and Positive Persistent Photoconductance in Graphene. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.11, 4682-4687.
Wang, Yu, Liu, Erfu, Gao, Anyuan, Cao, Tianjun, Long, Mingsheng, Pan, Chen, Zhang, Lili, Zeng, Junwen, Wang, Chenyu, Hu, Weida, Liang, Shi-Jun, Miao, Feng. Negative Photoconductance in van der Waals Heterostructure-Based Floating Gate Phototransistor. ACS nano, vol.12, no.9, 9513-9520.
Ratha, Satyajit, Simbeck, Adam J., Late, Dattatray J., Nayak, Saroj K., Rout, Chandra Sekhar. Negative infrared photocurrent response in layered WS2/reduced graphene oxide hybrids. Applied physics letters, vol.105, no.24, 243502-.
Baek, Eunhye, Rim, Taiuk, Schütt, Julian, Baek, Chang-ki, Kim, Kihyun, Baraban, Larysa, Cuniberti, Gianaurelio. Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.11, 6727-6734.
Nakanishi, Hideyuki, Bishop, Kyle J. M., Kowalczyk, Bartlomiej, Nitzan, Abraham, Weiss, Emily A., Tretiakov, Konstantin V., Apodaca, Mario M., Klajn, Rafal, Stoddart, J. Fraser, Grzybowski, Bartosz A.. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature, vol.460, no.7253, 371-375.
Kolobov, A. V., Fons, P., Tominaga, J..
Electronic excitation-induced semiconductor-to-metal transition in monolayer
Qi, Yanpeng, Naumov, Pavel G., Ali, Mazhar N., Rajamathi, Catherine R., Schnelle, Walter, Barkalov, Oleg, Hanfland, Michael, Wu, Shu-Chun, Shekhar, Chandra, Sun, Yan, Süß, Vicky, Schmidt, Marcus, Schwarz, Ulrich, Pippel, Eckhard, Werner, Peter, Hillebrand, Reinald, Förster, Tobias, Kampert, Erik, Parkin, Stuart, Cava, R. J., Felser, Claudia, Yan, Binghai, Medvedev, Sergey A.. Superconductivity in Weyl semimetal candidate MoTe2. Nature communications, vol.7, 11038-.
Huang, Hai, Wang, Jianlu, Hu, Weida, Liao, Lei, Wang, Peng, Wang, Xudong, Gong, Fan, Chen, Yan, Wu, Guangjian, Luo, Wenjin, Shen, Hong, Lin, Tie, Sun, Jinglan, Meng, Xiangjian, Chen, Xiaoshuang, Chu, Junhao. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, vol.27, no.44, 445201-.
Bie, Ya-Qing, Grosso, Gabriele, Heuck, Mikkel, Furchi, Marco M., Cao, Yuan, Zheng, Jiabao, Bunandar, Darius, Navarro-Moratalla, Efren, Zhou, Lin, Efetov, Dmitri K., Taniguchi, Takashi, Watanabe, Kenji, Kong, Jing, Englund, Dirk, Jarillo-Herrero, Pablo. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nature nanotechnology, vol.12, no.12, 1124-1129.
Nakaharai, Shu, Yamamoto, Mahito, Ueno, Keiji, Lin, Yen-Fu, Li, Song-Lin, Tsukagoshi, Kazuhito. Electrostatically Reversible Polarity of Ambipolar α-MoTe2 Transistors. ACS nano, vol.9, no.6, 5976-5983.
Wu, Enxiu, Xie, Yuan, Zhang, Jing, Zhang, Hao, Hu, Xiaodong, Liu, Jing, Zhou, Chongwu, Zhang, Daihua. Dynamically controllable polarity modulation of MoTe 2 field-effect transistors through ultraviolet light and electrostatic activation. Science advances, vol.5, no.5, eaav3430-.
Luo, Wei, Zhu, Mengjian, Peng, Gang, Zheng, Xiaoming, Miao, Feng, Bai, Shuxin, Zhang, Xue‐Ao, Qin, Shiqiao. Carrier Modulation of Ambipolar Few‐Layer MoTe2 Transistors by MgO Surface Charge Transfer Doping. Advanced functional materials, vol.28, no.15, 1704539-.
Qu, Deshun, Liu, Xiaochi, Huang, Ming, Lee, Changmin, Ahmed, Faisal, Kim, Hyoungsub, Ruoff, Rodney S., Hone, James, Yoo, Won Jong. Carrier‐Type Modulation and Mobility Improvement of Thin MoTe2. Advanced materials, vol.29, no.39, 1606433-.
Chang, Yuan‐Ming, Yang, Shih‐Hsien, Lin, Che‐Yi, Chen, Chang‐Hung, Lien, Chen‐Hsin, Jian, Wen‐Bin, Ueno, Keiji, Suen, Yuen‐Wuu, Tsukagoshi, Kazuhito, Lin, Yen‐Fu. Reversible and Precisely Controllable p/n‐Type Doping of MoTe2 Transistors through Electrothermal Doping. Advanced materials, vol.30, no.13, 1706995-.
Nakaharai, Shu, Yamamoto, Mahito, Ueno, Keiji, Tsukagoshi, Kazuhito. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning. ACS applied materials & interfaces, vol.8, no.23, 14732-14739.
Ma, P., Flöry, N., Salamin, Y., Baeuerle, B., Emboras, A., Josten, A., Taniguchi, T., Watanabe, K., Novotny, L., Leuthold, J.. Fast MoTe2 Waveguide Photodetector with High Sensitivity at Telecommunication Wavelengths. ACS photonics, vol.5, no.5, 1846-1852.
Late, Dattatray J.. Temperature-dependent phonon shifts in atomically thin MoTe2 nanosheets. Applied materials today, vol.5, 98-102.
Late, Dattatray J., Ghosh, Anupama, Chakraborty, Biswanath, Sood, A.K., Waghmare, Umesh V., Rao, C.N.R.. Molecular charge-transfer interaction with single-layer graphene. Journal of experimental nanoscience, vol.6, no.6, 641-651.
Xie, Chao, Wang, Yi, Zhang, Zhi-Xiang, Wang, Di, Luo, Lin-Bao. Graphene/Semiconductor Hybrid Heterostructures for Optoelectronic Device Applications. Nano today, vol.19, 41-83.
Buscema, Michele, Island, Joshua O., Groenendijk, Dirk J., Blanter, Sofya I., Steele, Gary A., van der Zant, Herre S. J., Castellanos-Gomez, Andres. Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society reviews, vol.44, no.11, 3691-3718.
Ghimire, Mohan Kumar, Ji, Hyunjin, Gul, Hamza Zad, Yi, Hojoon, Jiang, Jinbao, Lim, Seong Chu. Defect-Affected Photocurrent in MoTe2 FETs. ACS applied materials & interfaces, vol.11, no.10, 10068-10073.
Rasool, Haider I., Ophus, Colin, Zettl, Alex. Atomic Defects in Two Dimensional Materials. Advanced materials, vol.27, no.38, 5771-5777.
Dabral, A., Lu, A. K. A., Chiappe, D., Houssa, M., Pourtois, G.. A systematic study of various 2D materials in the light of defect formation and oxidation. Physical chemistry chemical physics : PCCP, vol.21, no.3, 1089-1099.
Kim, Sera, Song, Seunghyun, Park, Jongho, Yu, Ho Sung, Cho, Suyeon, Kim, Dohyun, Baik, Jaeyoon, Choe, Duk-Hyun, Chang, K. J., Lee, Young Hee, Kim, Sung Wng, Yang, Heejun. Long-Range Lattice Engineering of MoTe2 by a 2D Electride. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.6, 3363-3368.
Tan, Yuan, Luo, Fang, Zhu, Mengjian, Xu, Xiaolong, Ye, Yu, Li, Bing, Wang, Guang, Luo, Wei, Zheng, Xiaoming, Wu, Nannan, Yu, Yayun, Qin, Shiqiao, Zhang, Xue-Ao. Controllable 2H-to-1T′ phase transition in few-layer MoTe2. Nanoscale, vol.10, no.42, 19964-19971.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.