$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Comprehensive Study of the Growth Mechanism and Photoelectrochemical Activity of a BiVO4/Bi2S3 Nanowire Composite

ACS applied materials & interfaces, v.12 no.35, 2020년, pp.39713 - 39719  

Hong, Changhyun (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) ,  Kim, Yong-Il (Korea Research Institute of Standards and Science (KRISS) , 267 Gajeong , Yuseong, Daejeon 34113 , Republic of Korea) ,  Seo, Jong Hyeok (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) ,  Kim, Ji Hyeon (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) ,  Ma, Ahyeon (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) ,  Lim, Yun Ji (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National Universit) ,  Seo, Dongho ,  Baek, So Yeon ,  Jung, Haeun ,  Nam, Ki Min

Abstract AI-Helper 아이콘AI-Helper

A BiVO4/Bi2S3 composite comprising Bi2S3 nanowires on top of a BiVO4 film was prepared via hydrothermal reaction. Because additional Bi3+ ions were not delivered during the reaction, BiVO4 served as the Bi3+ ion source for the development of Bi2S3. A detailed growth mechanism of the nanowire was elu...

Keyword

참고문헌 (39)

  1. Lewis, Nathan S., Nocera, Daniel G.. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, vol.103, no.43, 15729-15735.

  2. FUJISHIMA, AKIRA, HONDA, KENICHI. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, vol.238, no.5358, 37-38.

  3. Osterloh, Frank E.. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society reviews, vol.42, no.6, 2294-2320.

  4. Cowan, Alexander J., Durrant, James R.. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society reviews, vol.42, no.6, 2281-2293.

  5. Walter, Michael G., Warren, Emily L., McKone, James R., Boettcher, Shannon W., Mi, Qixi, Santori, Elizabeth A., Lewis, Nathan S.. Solar Water Splitting Cells. Chemical reviews, vol.110, no.11, 6446-6473.

  6. Bard, Allen J.. Photoelectrochemistry. Science, vol.207, no.4427, 139-144.

  7. Kudo, Akihiko, Miseki, Yugo. Heterogeneous photocatalyst materials for water splitting. Chemical Society reviews, vol.38, no.1, 253-278.

  8. Sivula, Kevin, van de Krol, Roel. Semiconducting materials for photoelectrochemical energy conversion. Nature reviews. Materials, vol.1, no.2, 15010-.

  9. Yao, Tingting, An, Xiurui, Han, Hongxian, Chen, John Qianjun, Li, Can. Photoelectrocatalytic Materials for Solar Water Splitting. Advanced energy materials, vol.8, no.21, 1800210-.

  10. Tahir, Asif Ali, Ehsan, Muhammad Ali, Mazhar, Muhammad, Wijayantha, K. G. Upul, Zeller, Matthias, Hunter, A. D.. Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.17, 5084-5092.

  11. Kim, Ji Hyeon, Lim, Taewaen, Park, Joon Yong, Ma, Ahyeon, Jung, Haeun, Kim, Ha Young, Cho, Sung Ki, Yoon, Hana, Nam, Ki Min. Understanding and improving photoelectrochemical performance of Bi2O3/Bi2S3 composite. New journal of chemistry = Nouveau journal de chimie, vol.43, no.30, 11893-11902.

  12. Tahir, Asif Ali, Ehsan, Muhammad Ali, Mazhar, Muhammad, Wijayantha, K. G. Upul, Zeller, Matthias, Hunter, A. D.. Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.17, 5084-5092.

  13. Luo, Sheng, Qin, Fan, Ming, Yin’an, Zhao, Huiping, Liu, Yunling, Chen, Rong. Fabrication uniform hollow Bi2S3 nanospheres via Kirkendall effect for photocatalytic reduction of Cr(VI) in electroplating industry wastewater. Journal of hazardous materials, vol.340, 253-262.

  14. Wang, Runming, Cheng, Gang, Dai, Zan, Ding, Jie, Liu, Yunling, Chen, Rong. Ionic liquid-employed synthesis of Bi2E3 (E=S, Se, and Te) hierarchitectures: The case of Bi2S3 with superior visible-light-driven Cr(VI) photoreduction capacity. Chemical engineering journal, vol.327, 371-386.

  15. Rath, Arup K., Bernechea, Maria, Martinez, Luis, Konstantatos, Gerasimos. Solution‐Processed Heterojunction Solar Cells Based on p‐type PbS Quantum Dots and n‐type Bi2S3 Nanocrystals. Advanced materials, vol.23, no.32, 3712-3717.

  16. He, Huichao, Berglund, Sean P., Xiao, Peng, Chemelewski, William D., Zhang, Yunhuai, Mullins, C. Buddie. Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. Journal of materials chemistry. A, Materials for energy and sustainability, vol.1, no.41, 12826-.

  17. Liu, Canjun, Yang, Yahui, Li, Wenzhang, Li, Jie, Li, Yaomin, Chen, Qiyuan. In situ synthesis of Bi 2 S 3 sensitized WO 3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance. Scientific reports, vol.6, 23451-.

  18. Zumeta-Dubé, Inti, Ruiz-Ruiz, Víctor-Fabián, Díaz, David, Rodil-Posadas, Sandra, Zeinert, Andreas. TiO2 Sensitization with Bi2S3 Quantum Dots: The Inconvenience of Sodium Ions in the Deposition Procedure. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.22, 11495-11504.

  19. Kim, Jin H., Park, Hongsik, Hsu, Chih-Hsun, Xu, Jimmy. Facile Synthesis of Bismuth Sulfide Nanostructures and Morphology Tuning by a Biomolecule. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.21, 9634-9639.

  20. Wang, Yue, Chen, Jing, Wang, Peng, Chen, Ling, Chen, Yu-Biao, Wu, Li-Ming. Syntheses, Growth Mechanism, and Optical Properties of [001] Growing Bi2S3 Nanorods. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.36, 16009-16014.

  21. Wang, H., Zhu, J.-J., Zhu, J.-M., Chen, H.-Y.. Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.106, no.15, 3848-3854.

  22. Li, Yongtao, Huang, Le, Li, Bo, Wang, Xiaoting, Zhou, Ziqi, Li, Jingbo, Wei, Zhongming. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. ACS nano, vol.10, no.9, 8938-8946.

  23. Park, Mira, Seo, Jong Hyeok, Kim, Ji Hyeon, Park, Gisang, Park, Joon Yong, Seo, Won Seok, Song, Hyunjoon, Nam, Ki Min. Effective Formation of WO3 Nanoparticle/Bi2S3 Nanowire Composite for Improved Photoelectrochemical Performance. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.122, no.31, 17676-17685.

  24. Chen, Hong-Qin, Lin, Lu-Yin, Chen, Shan-Lung. Direct Growth of BiVO4/Bi2S3 Nanorod Array on Conductive Glass as Photocatalyst for Enhancing the Photoelectrochemical Performance. ACS applied energy materials, vol.1, no.11, 6089-6100.

  25. Han, M., Jia, J.. The interlace of Bi2S3 nanowires with TiO2 nanorods: An effective strategy for high photoelectrochemical performance. Journal of colloid and interface science, vol.481, 91-99.

  26. ParkThese authors contributed equally to this work., Gisang, Park, Joon Yong, Seo, Jong Hyeok, Oh, Kyung Hee, Ma, Ahyeon, Nam, Ki Min. Ultrasonic-assisted preparation of a pinhole-free BiVO4 photoanode for enhanced photoelectrochemical water oxidation. Chemical communications : Chem comm, vol.54, no.44, 5570-5573.

  27. Kim, Ji Hyeon, Ma, Ahyeon, Jung, Haeun, Kim, Ha Young, Choe, Hye Rin, Kim, Young Heon, Nam, Ki Min. In Situ Growth of the Bi2S3 Nanowire Array on the Bi2MoO6 Film for an Improved Photoelectrochemical Performance. ACS omega, vol.4, no.17, 17359-17365.

  28. Choe, Hye Rin, Kim, Ji Hyeon, Ma, Ahyeon, Jung, Haeun, Kim, Ha Young, Nam, Ki Min. Understanding Reaction Kinetics by Tailoring Metal Co-catalysts of the BiVO4 Photocatalyst. ACS omega, vol.4, no.15, 16597-16602.

  29. Gote, Gorkshnath H., Bhopale, Somnath R., More, Mahendra A., Late, Dattatray J.. Realization of Efficient Field Emitter Based on Reduced Graphene Oxide‐Bi2S3 Heterostructures. Physica status solidi. PSS. A, Applications and materials science, vol.216, no.18, 1900121-.

  30. Luo, Wen, Li, Feng, Li, Qidong, Wang, Xuanpeng, Yang, Wei, Zhou, Liang, Mai, Liqiang. Heterostructured Bi2S3–Bi2O3 Nanosheets with a Built-In Electric Field for Improved Sodium Storage. ACS applied materials & interfaces, vol.10, no.8, 7201-7207.

  31. Chen, Lang, He, Jie, Yuan, Qing, Liu, Ying, Au, Chak-Tong, Yin, Shuang-Feng. Environmentally benign synthesis of branched Bi2O3-Bi2S3 photocatalysts by an etching and re-growth method. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.3, 1096-1102.

  32. Sin, Chuen-Keung, Zhang, Jingzhao, Tse, Kinfai, Zhu, Junyi. A brief review of formation energies calculation of surfaces and edges in semiconductors. Journal of semiconductors, vol.41, no.6, 061101-.

  33. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H.. A comprehensive review of ZnO materials and devices. Journal of applied physics, vol.98, no.4, 041301-.

  34. Nam, Ki Min, Kim, Yong-Il, Jo, Younghun, Lee, Seung Mi, Kim, Bog G., Choi, Ran, Choi, Sang-Il, Song, Hyunjoon, Park, Joon T.. New Crystal Structure: Synthesis and Characterization of Hexagonal Wurtzite MnO. Journal of the American Chemical Society, vol.134, no.20, 8392-8395.

  35. Liu, Canjun, Yang, Yahui, Li, Wenzhang, Li, Jie, Li, Yaomin, Shi, Qilin, Chen, Qiyuan. Highly Efficient Photoelectrochemical Hydrogen Generation Using ZnxBi2S3+x Sensitized Platelike WO3 Photoelectrodes. ACS applied materials & interfaces, vol.7, no.20, 10763-10770.

  36. Choi, Woong, Park, Garam, Bae, Kyung-Lyul, Choi, Ji Yong, Nam, Ki Min, Song, Hyunjoon. Metal-semiconductor double shell hollow nanocubes for highly stable hydrogen generation photocatalysts. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.35, 13414-13418.

  37. Qiao, Xiu-Qing, Zhang, Zhen-Wei, Li, Qiu-Hao, Hou, Dongfang, Zhang, Qichun, Zhang, Jian, Li, Dong-Sheng, Feng, Pingyun, Bu, Xianhui. In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(VI). Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.45, 22580-22589.

  38. Cline, J. P.; Deslattes, R. D.; Staudenmann, J.L.; Kessler, E. G.; Hudson, L. T.; Henins, A.; Cheary, R. W. NIST Certificate, SRM 640c Line Position and Line Profile Standard for Powder Diffraction ; National Institute of Standards and Technology (NIST): Gaithersburg, MD, 2000. 

  39. Coelho, Alan A.. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of applied crystallography : JAC, vol.51, no.1, 210-218.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로