최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS applied materials & interfaces, v.12 no.35, 2020년, pp.39713 - 39719
Hong, Changhyun (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) , Kim, Yong-Il (Korea Research Institute of Standards and Science (KRISS) , 267 Gajeong , Yuseong, Daejeon 34113 , Republic of Korea) , Seo, Jong Hyeok (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) , Kim, Ji Hyeon (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) , Ma, Ahyeon (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National University , Geumjeong, Busan 46241 , Republic of Korea) , Lim, Yun Ji (Department of Chemistry and Chemistry Institute for Functional Materials , Pusan National Universit) , Seo, Dongho , Baek, So Yeon , Jung, Haeun , Nam, Ki Min
A BiVO4/Bi2S3 composite comprising Bi2S3 nanowires on top of a BiVO4 film was prepared via hydrothermal reaction. Because additional Bi3+ ions were not delivered during the reaction, BiVO4 served as the Bi3+ ion source for the development of Bi2S3. A detailed growth mechanism of the nanowire was elu...
Lewis, Nathan S., Nocera, Daniel G.. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, vol.103, no.43, 15729-15735.
FUJISHIMA, AKIRA, HONDA, KENICHI. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, vol.238, no.5358, 37-38.
Osterloh, Frank E.. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society reviews, vol.42, no.6, 2294-2320.
Cowan, Alexander J., Durrant, James R.. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society reviews, vol.42, no.6, 2281-2293.
Walter, Michael G., Warren, Emily L., McKone, James R., Boettcher, Shannon W., Mi, Qixi, Santori, Elizabeth A., Lewis, Nathan S.. Solar Water Splitting Cells. Chemical reviews, vol.110, no.11, 6446-6473.
Bard, Allen J.. Photoelectrochemistry. Science, vol.207, no.4427, 139-144.
Kudo, Akihiko, Miseki, Yugo. Heterogeneous photocatalyst materials for water splitting. Chemical Society reviews, vol.38, no.1, 253-278.
Sivula, Kevin, van de Krol, Roel. Semiconducting materials for photoelectrochemical energy conversion. Nature reviews. Materials, vol.1, no.2, 15010-.
Yao, Tingting, An, Xiurui, Han, Hongxian, Chen, John Qianjun, Li, Can. Photoelectrocatalytic Materials for Solar Water Splitting. Advanced energy materials, vol.8, no.21, 1800210-.
Tahir, Asif Ali, Ehsan, Muhammad Ali, Mazhar, Muhammad, Wijayantha, K. G. Upul, Zeller, Matthias, Hunter, A. D.. Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.17, 5084-5092.
Kim, Ji Hyeon, Lim, Taewaen, Park, Joon Yong, Ma, Ahyeon, Jung, Haeun, Kim, Ha Young, Cho, Sung Ki, Yoon, Hana, Nam, Ki Min. Understanding and improving photoelectrochemical performance of Bi2O3/Bi2S3 composite. New journal of chemistry = Nouveau journal de chimie, vol.43, no.30, 11893-11902.
Tahir, Asif Ali, Ehsan, Muhammad Ali, Mazhar, Muhammad, Wijayantha, K. G. Upul, Zeller, Matthias, Hunter, A. D.. Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.17, 5084-5092.
Luo, Sheng, Qin, Fan, Ming, Yin’an, Zhao, Huiping, Liu, Yunling, Chen, Rong. Fabrication uniform hollow Bi2S3 nanospheres via Kirkendall effect for photocatalytic reduction of Cr(VI) in electroplating industry wastewater. Journal of hazardous materials, vol.340, 253-262.
Wang, Runming, Cheng, Gang, Dai, Zan, Ding, Jie, Liu, Yunling, Chen, Rong. Ionic liquid-employed synthesis of Bi2E3 (E=S, Se, and Te) hierarchitectures: The case of Bi2S3 with superior visible-light-driven Cr(VI) photoreduction capacity. Chemical engineering journal, vol.327, 371-386.
Rath, Arup K., Bernechea, Maria, Martinez, Luis, Konstantatos, Gerasimos. Solution‐Processed Heterojunction Solar Cells Based on p‐type PbS Quantum Dots and n‐type Bi2S3 Nanocrystals. Advanced materials, vol.23, no.32, 3712-3717.
He, Huichao, Berglund, Sean P., Xiao, Peng, Chemelewski, William D., Zhang, Yunhuai, Mullins, C. Buddie. Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. Journal of materials chemistry. A, Materials for energy and sustainability, vol.1, no.41, 12826-.
Liu, Canjun, Yang, Yahui, Li, Wenzhang, Li, Jie, Li, Yaomin, Chen, Qiyuan. In situ synthesis of Bi 2 S 3 sensitized WO 3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance. Scientific reports, vol.6, 23451-.
Zumeta-Dubé, Inti, Ruiz-Ruiz, Víctor-Fabián, Díaz, David, Rodil-Posadas, Sandra, Zeinert, Andreas. TiO2 Sensitization with Bi2S3 Quantum Dots: The Inconvenience of Sodium Ions in the Deposition Procedure. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.22, 11495-11504.
Kim, Jin H., Park, Hongsik, Hsu, Chih-Hsun, Xu, Jimmy. Facile Synthesis of Bismuth Sulfide Nanostructures and Morphology Tuning by a Biomolecule. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.114, no.21, 9634-9639.
Wang, Yue, Chen, Jing, Wang, Peng, Chen, Ling, Chen, Yu-Biao, Wu, Li-Ming. Syntheses, Growth Mechanism, and Optical Properties of [001] Growing Bi2S3 Nanorods. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.36, 16009-16014.
Wang, H., Zhu, J.-J., Zhu, J.-M., Chen, H.-Y.. Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.106, no.15, 3848-3854.
Li, Yongtao, Huang, Le, Li, Bo, Wang, Xiaoting, Zhou, Ziqi, Li, Jingbo, Wei, Zhongming. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. ACS nano, vol.10, no.9, 8938-8946.
Park, Mira, Seo, Jong Hyeok, Kim, Ji Hyeon, Park, Gisang, Park, Joon Yong, Seo, Won Seok, Song, Hyunjoon, Nam, Ki Min. Effective Formation of WO3 Nanoparticle/Bi2S3 Nanowire Composite for Improved Photoelectrochemical Performance. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.122, no.31, 17676-17685.
Chen, Hong-Qin, Lin, Lu-Yin, Chen, Shan-Lung. Direct Growth of BiVO4/Bi2S3 Nanorod Array on Conductive Glass as Photocatalyst for Enhancing the Photoelectrochemical Performance. ACS applied energy materials, vol.1, no.11, 6089-6100.
Han, M., Jia, J.. The interlace of Bi2S3 nanowires with TiO2 nanorods: An effective strategy for high photoelectrochemical performance. Journal of colloid and interface science, vol.481, 91-99.
ParkThese authors contributed equally to this work., Gisang, Park, Joon Yong, Seo, Jong Hyeok, Oh, Kyung Hee, Ma, Ahyeon, Nam, Ki Min. Ultrasonic-assisted preparation of a pinhole-free BiVO4 photoanode for enhanced photoelectrochemical water oxidation. Chemical communications : Chem comm, vol.54, no.44, 5570-5573.
Kim, Ji Hyeon, Ma, Ahyeon, Jung, Haeun, Kim, Ha Young, Choe, Hye Rin, Kim, Young Heon, Nam, Ki Min. In Situ Growth of the Bi2S3 Nanowire Array on the Bi2MoO6 Film for an Improved Photoelectrochemical Performance. ACS omega, vol.4, no.17, 17359-17365.
Choe, Hye Rin, Kim, Ji Hyeon, Ma, Ahyeon, Jung, Haeun, Kim, Ha Young, Nam, Ki Min. Understanding Reaction Kinetics by Tailoring Metal Co-catalysts of the BiVO4 Photocatalyst. ACS omega, vol.4, no.15, 16597-16602.
Gote, Gorkshnath H., Bhopale, Somnath R., More, Mahendra A., Late, Dattatray J.. Realization of Efficient Field Emitter Based on Reduced Graphene Oxide‐Bi2S3 Heterostructures. Physica status solidi. PSS. A, Applications and materials science, vol.216, no.18, 1900121-.
Luo, Wen, Li, Feng, Li, Qidong, Wang, Xuanpeng, Yang, Wei, Zhou, Liang, Mai, Liqiang. Heterostructured Bi2S3–Bi2O3 Nanosheets with a Built-In Electric Field for Improved Sodium Storage. ACS applied materials & interfaces, vol.10, no.8, 7201-7207.
Chen, Lang, He, Jie, Yuan, Qing, Liu, Ying, Au, Chak-Tong, Yin, Shuang-Feng. Environmentally benign synthesis of branched Bi2O3-Bi2S3 photocatalysts by an etching and re-growth method. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.3, 1096-1102.
Sin, Chuen-Keung, Zhang, Jingzhao, Tse, Kinfai, Zhu, Junyi. A brief review of formation energies calculation of surfaces and edges in semiconductors. Journal of semiconductors, vol.41, no.6, 061101-.
Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., Morkoç, H.. A comprehensive review of ZnO materials and devices. Journal of applied physics, vol.98, no.4, 041301-.
Nam, Ki Min, Kim, Yong-Il, Jo, Younghun, Lee, Seung Mi, Kim, Bog G., Choi, Ran, Choi, Sang-Il, Song, Hyunjoon, Park, Joon T.. New Crystal Structure: Synthesis and Characterization of Hexagonal Wurtzite MnO. Journal of the American Chemical Society, vol.134, no.20, 8392-8395.
Liu, Canjun, Yang, Yahui, Li, Wenzhang, Li, Jie, Li, Yaomin, Shi, Qilin, Chen, Qiyuan. Highly Efficient Photoelectrochemical Hydrogen Generation Using ZnxBi2S3+x Sensitized Platelike WO3 Photoelectrodes. ACS applied materials & interfaces, vol.7, no.20, 10763-10770.
Choi, Woong, Park, Garam, Bae, Kyung-Lyul, Choi, Ji Yong, Nam, Ki Min, Song, Hyunjoon. Metal-semiconductor double shell hollow nanocubes for highly stable hydrogen generation photocatalysts. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.35, 13414-13418.
Qiao, Xiu-Qing, Zhang, Zhen-Wei, Li, Qiu-Hao, Hou, Dongfang, Zhang, Qichun, Zhang, Jian, Li, Dong-Sheng, Feng, Pingyun, Bu, Xianhui. In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(VI). Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.45, 22580-22589.
Cline, J. P.; Deslattes, R. D.; Staudenmann, J.L.; Kessler, E. G.; Hudson, L. T.; Henins, A.; Cheary, R. W. NIST Certificate, SRM 640c Line Position and Line Profile Standard for Powder Diffraction ; National Institute of Standards and Technology (NIST): Gaithersburg, MD, 2000.
Coelho, Alan A.. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of applied crystallography : JAC, vol.51, no.1, 210-218.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.