$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Diffusion-Dependent Graphite Electrode for All-Solid-State Batteries with Extremely High Energy Density

ACS energy letters, v.5, 2020년, pp.2995 - 3004  

Kim, Ju Young (Department of Energy Science and Engineering , Daegu Gyeongbuk Institute of Science and Technology(DGIST) , 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun , Daegu 42988 , Republic of Korea) ,  Park, Joonam (Reality Devices Research Division , Electronics and Telecommunications Research Institute (ETRI) , 218 Gajeongno, Yuseong-gu , Daejeon 34129 , Republic of Korea) ,  Lee, Myeong Ju (Reality Devices Research Division , Electronics and Telecommunications Research Institute (ETRI) , 218 Gajeongno, Yuseong-gu , Daejeon 34129 , Republic of Korea) ,  Kang, Seok Hun (Reality Devices Research Division , Electronics and Telecommunications Research Institute (ETRI) , 218 Gajeongno, Yuseong-gu , Daejeon 34129 , Republic of Korea) ,  Shin, Dong Ok (Reality Devices Research Division , Electronics and Telecommunications Research Institute (ETRI) , 218 Gajeongno, Yuseong-gu , Daejeon 34129 , Republic of Korea) ,  Oh, Jimin ,  Kim, Jumi ,  Kim, Kwang Man ,  Lee, Young-Gi ,  Lee, Yong Min

Abstract AI-Helper 아이콘AI-Helper

In all-solid-state batteries, the electrode has been generally fabricated as a composite of active material and solid electrolyte to imitate the electrode of lithium-ion batteries employing liquid electrolytes. Therefore, an efficient protocol to spatially arrange the two components with a scalable ...

참고문헌 (68)

  1. Wang, Yan, Richards, William Davidson, Ong, Shyue Ping, Miara, Lincoln J., Kim, Jae Chul, Mo, Yifei, Ceder, Gerbrand. Design principles for solid-state lithium superionic conductors. Nature materials, vol.14, no.10, 1026-1031.

  2. Choi, Jang Wook, Aurbach, Doron. Promise and reality of post-lithium-ion batteries with high energy densities. Nature reviews. Materials, vol.1, no.4, 16013-.

  3. Wan, J., Xie, J., Mackanic, D.G., Burke, W., Bao, Z., Cui, Y.. Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials today nano, vol.4, 1-16.

  4. Xia, Shuixin, Wu, Xinsheng, Zhang, Zhichu, Cui, Yi, Liu, Wei. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem, vol.5, no.4, 753-785.

  5. Hu, Yong-Sheng, Lu, Yaxiang. 2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS energy letters, vol.4, no.11, 2689-2690.

  6. Zhao, Qing, Stalin, Sanjuna, Zhao, Chen-Zi, Archer, Lynden A.. Designing solid-state electrolytes for safe, energy-dense batteries. Nature reviews. Materials, vol.5, no.3, 229-252.

  7. Lim, Hee-Dae, Park, Jae-Ho, Shin, Hyeon-Ji, Jeong, Jiwon, Kim, Jun Tae, Nam, Kyung-Wan, Jung, Hun-Gi, Chung, Kyung Yoon. A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy storage materials, vol.25, 224-250.

  8. Li, Juchuan, Ma, Cheng, Chi, Miaofang, Liang, Chengdu, Dudney, Nancy J.. Solid Electrolyte: the Key for High‐Voltage Lithium Batteries. Advanced energy materials, vol.5, no.4, 1401408-.

  9. Bachman, John Christopher, Muy, Sokseiha, Grimaud, Alexis, Chang, Hao-Hsun, Pour, Nir, Lux, Simon F., Paschos, Odysseas, Maglia, Filippo, Lupart, Saskia, Lamp, Peter, Giordano, Livia, Shao-Horn, Yang. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical reviews, vol.116, no.1, 140-162.

  10. Zhang, Zhizhen, Shao, Yuanjun, Lotsch, Bettina, Hu, Yong-Sheng, Li, Hong, Janek, Jürgen, Nazar, Linda F., Nan, Ce-Wen, Maier, Joachim, Armand, Michel, Chen, Liquan. New horizons for inorganic solid state ion conductors. Energy & environmental science, vol.11, no.8, 1945-1976.

  11. Liu, Lilu, Qi, Xingguo, Yin, Shijun, Zhang, Qiangqiang, Liu, Xiaozhi, Suo, Liumin, Li, Hong, Chen, Liquan, Hu, Yong-Sheng. In Situ Formation of a Stable Interface in Solid-State Batteries. ACS energy letters, vol.4, 1650-1657.

  12. Manthiram, Arumugam, Yu, Xingwen, Wang, Shaofei. Lithium battery chemistries enabled by solid-state electrolytes. Nature reviews. Materials, vol.2, no.4, 16103-.

  13. Miura, Akira, Rosero-Navarro, Nataly Carolina, Sakuda, Atsushi, Tadanaga, Kiyoharu, Phuc, Nguyen H. H., Matsuda, Atsunori, Machida, Nobuya, Hayashi, Akitoshi, Tatsumisago, Masahiro. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nature reviews. Chemistry, vol.3, no.3, 189-198.

  14. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M.. New, Highly Ion-Conductive Crystals Precipitated from Li2S–P2S5 Glasses. Advanced materials, vol.17, no.7, 918-921.

  15. Kato, Yuki, Hori, Satoshi, Saito, Toshiya, Suzuki, Kota, Hirayama, Masaaki, Mitsui, Akio, Yonemura, Masao, Iba, Hideki, Kanno, Ryoji. High-power all-solid-state batteries using sulfide superionic conductors. Nature energy, vol.1, 16030_1-16030_7.

  16. Park, Kern Ho, Bai, Qiang, Kim, Dong Hyeon, Oh, Dae Yang, Zhu, Yizhou, Mo, Yifei, Jung, Yoon Seok. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All‐Solid‐State Batteries. Advanced energy materials, vol.8, no.18, 1800035-.

  17. Ohta, Shingo, Seki, Juntaro, Yagi, Yusuke, Kihira, Yuki, Tani, Takao, Asaoka, Takahiko. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. Journal of power sources, vol.265, 40-44.

  18. Han, Xiaogang, Gong, Yunhui, Fu, Kun (Kelvin), He, Xingfeng, Hitz, Gregory T., Dai, Jiaqi, Pearse, Alex, Liu, Boyang, Wang, Howard, Rubloff, Gary, Mo, Yifei, Thangadurai, Venkataraman, Wachsman, Eric D., Hu, Liangbing. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature materials, vol.16, no.5, 572-579.

  19. Xu, Shaomao, McOwen, Dennis W., Wang, Chengwei, Zhang, Lei, Luo, Wei, Chen, Chaoji, Li, Yiju, Gong, Yunhui, Dai, Jiaqi, Kuang, Yudi, Yang, Chunpeng, Hamann, Tanner R., Wachsman, Eric D., Hu, Liangbing. Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.18, no.6, 3926-3933.

  20. Kim, Dong Hyeon, Oh, Dae Yang, Park, Kern Ho, Choi, Young Eun, Nam, Young Jin, Lee, Han Ah, Lee, Sang-Min, Jung, Yoon Seok. Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.5, 3013-3020.

  21. Yang, Luyi, Wang, Zijian, Feng, Yancong, Tan, Rui, Zuo, Yunxing, Gao, Rongtan, Zhao, Yan, Han, Lei, Wang, Ziqi, Pan, Feng. Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li-Electrolyte Interface for Solid State Lithium‐Ion Batteries. Advanced energy materials, vol.7, no.22, 1701437-.

  22. Jiang, Zhouyang, Wang, Suqing, Chen, Xinzhi, Yang, Wenlong, Yao, Xiang, Hu, Xinchao, Han, Qingyue, Wang, Haihui. Tape‐Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium‐Metal Batteries. Advanced materials, vol.32, no.6, 1906221-.

  23. Cheng, Eric Jianfeng, Kimura, Takeshi, Shoji, Mao, Ueda, Hiroshi, Munakata, Hirokazu, Kanamura, Kiyoshi. Ceramic-Based Flexible Sheet Electrolyte for Li Batteries. ACS applied materials & interfaces, vol.12, no.9, 10382-10388.

  24. Sakuda, Atsushi, Hayashi, Akitoshi, Tatsumisago, Masahiro. Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Scientific reports, vol.3, 2261-.

  25. Liu, Yulong, Sun, Qian, Wang, Dawei, Adair, Keegan, Liang, Jianneng, Sun, Xueliang. Development of the cold sintering process and its application in solid-state lithium batteries. Journal of power sources, vol.393, 193-203.

  26. Pfenninger, Reto, Struzik, Michal, Garbayo, Iñigo, Stilp, Evelyn, Rupp, Jennifer L. M.. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nature energy, vol.4, no.6, 475-483.

  27. Strauss, Florian, Bartsch, Timo, de Biasi, Lea, Kim, A-Young, Janek, Jürgen, Hartmann, Pascal, Brezesinski, Torsten. Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries. ACS energy letters, vol.3, 992-996.

  28. Bielefeld, Anja, Weber, Dominik A., Janek, Jürgen. Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.123, no.3, 1626-1634.

  29. Shi, Tan, Tu, Qingsong, Tian, Yaosen, Xiao, Yihan, Miara, Lincoln J., Kononova, Olga, Ceder, Gerbrand. High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization. Advanced energy materials, vol.10, no.1, 1902881-.

  30. Chen, Xinzhi, He, Wenjun, Ding, Liang-Xin, Wang, Suqing, Wang, Haihui. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy & environmental science, vol.12, no.3, 938-944.

  31. Li, Yuqi, Yang, Yang, Lu, Yaxiang, Zhou, Quan, Qi, Xingguo, Meng, Qingshi, Rong, Xiaohui, Chen, Liquan, Hu, Yong-Sheng. Ultralow-Concentration Electrolyte for Na-Ion Batteries. ACS energy letters, vol.5, 1156-1158.

  32. Kim, J., Eom, M., Noh, S., Shin, D.. Effect of mixing method on the properties of composite cathodes for all-solid-state lithium batteries using Li2S-P2S5 solid electrolytes. Journal of power sources, vol.244, 476-481.

  33. Park, Chanhwi, Lee, Sangsoo, Kim, Kyubeom, Kim, Minhee, Choi, Sunho, Shin, Dongwook. Electrochemical Properties of Composite Cathode Using Bimodal Sized Electrolyte for All-Solid-State Batteries. Journal of the Electrochemical Society : JES, vol.166, no.3, A5318-A5322.

  34. Calpa, Marcela, Rosero-Navarro, Nataly Carolina, Miura, Akira, Tadanaga, Kiyoharu. Electrochemical performance of bulk-type all-solid-state batteries using small-sized Li7P3S11 solid electrolyte prepared by liquid phase as the ionic conductor in the composite cathode. Electrochimica acta, vol.296, 473-480.

  35. Oh, Dae Yang, Nam, Young Jin, Park, Kern Ho, Jung, Sung Hoo, Kim, Kyu Tae, Ha, A. Reum, Jung, Yoon Seok. Slurry‐Fabricable Li+‐Conductive Polymeric Binders for Practical All‐Solid‐State Lithium‐Ion Batteries Enabled by Solvate Ionic Liquids. Advanced energy materials, vol.9, no.16, 1802927-.

  36. Ates, Tugce, Keller, Marlou, Kulisch, Jörn, Adermann, Torben, Passerini, Stefano. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy storage materials, vol.17, 204-210.

  37. Park, M., Zhang, X., Chung, M., Less, G.B., Sastry, A.M.. A review of conduction phenomena in Li-ion batteries. Journal of power sources, vol.195, no.24, 7904-7929.

  38. Li, Matthew, Lu, Jun, Chen, Zhongwei, Amine, Khalil. 30 Years of Lithium‐Ion Batteries. Advanced materials, vol.30, no.33, 1800561-.

  39. Lee, Kyulin, Kim, Sangryun, Park, Jesik, Park, Sung Hyeon, Coskun, Ali, Jung, Dae Soo, Cho, Woosuk, Choi, Jang Wook. Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. Journal of the Electrochemical Society : JES, vol.164, no.9, A2075-A2081.

  40. Shao, Yuanjun, Wang, Hongchun, Gong, Zhengliang, Wang, Dawei, Zheng, Bizhu, Zhu, Jianping, Lu, Yaxiang, Hu, Yong-Sheng, Guo, Xiangxin, Li, Hong, Huang, Xuejie, Yang, Yong, Nan, Ce-Wen, Chen, Liquan. Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS energy letters, vol.3, 1212-1218.

  41. Bi, Zhijie, Zhao, Ning, Ma, Lina, Fu, Zhengqian, Xu, Fangfang, Wang, Chunsheng, Guo, Xiangxin. Interface engineering on cathode side for solid garnet batteries. Chemical engineering journal, vol.387, 124089-.

  42. Dong, Derui, Zhou, Bin, Sun, Yufei, Zhang, Hui, Zhong, Guiming, Dong, Qingyu, Fu, Fang, Qian, Hao, Lin, Zhiyong, Lu, Derong, Shen, Yanbin, Wu, Jihuai, Chen, Liwei, Chen, Hongwei. Polymer Electrolyte Glue: A Universal Interfacial Modification Strategy for All-Solid-State Li Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.19, no.4, 2343-2349.

  43. de Levie, R.. On porous electrodes in electrolyte solutions-IV. Electrochimica acta, vol.9, no.9, 1231-1245.

  44. Ogihara, Nobuhiro, Itou, Yuichi, Sasaki, Tsuyoshi, Takeuchi, Yoji. Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.9, 4612-4619.

  45. Kaiser, N., Spannenberger, S., Schmitt, M., Cronau, M., Kato, Y., Roling, B.. Ion transport limitations in all-solid-state lithium battery electrodes containing a sulfide-based electrolyte. Journal of power sources, vol.396, 175-181.

  46. Park, Yoon-Soo, Lee, Taeg-Woo, Shin, Min-Seon, Lim, Sung-Hwan, Lee, Sung-Man. Modification for Improving the Electrochemical Performance of Spherically-Shaped Natural Graphite as Anode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society : JES, vol.163, no.14, A3078-A3086.

  47. Li-ion battery materials: present and future. Materials today, vol.18, no.5, 252-264.

  48. Kato, Yuki, Shiotani, Shinya, Morita, Keisuke, Suzuki, Kota, Hirayama, Masaaki, Kanno, Ryoji. All-Solid-State Batteries with Thick Electrode Configurations. The journal of physical chemistry letters, vol.9, no.3, 607-613.

  49. Sotomayor, Maria Eugenia, Torre-Gamarra, Carmen de la, Levenfeld, Belen, Sanchez, Jean-Yves, Varez, Alejandro, Kim, Guk-Tae, Varzi, Alberto, Passerini, Stefano. Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries. Journal of power sources, vol.437, 226923-.

  50. Maheshwari, A., Dumitrescu, M.A., Destro, M., Santarelli, M.. Inverse parameter determination in the development of an optimized lithium iron phosphate - Graphite battery discharge model. Journal of power sources, vol.307, 160-172.

  51. Dietrich, Christian, Weber, Dominik A., Sedlmaier, Stefan J., Indris, Sylvio, Culver, Sean P., Walter, Dirk, Janek, Jürgen, Zeier, Wolfgang G.. Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.34, 18111-18119.

  52. Gruet, David, Delobel, Bruno, Sicsic, David, Lucas, Ivan T., Turmine, Mireille, Vivier, Vincent. Electrochemical behavior of pure graphite studied with a powder microelectrode. Electrochemistry communications, vol.95, 23-27.

  53. Park, Joonam, Kim, Dohwan, Appiah, Williams A., Song, Jihun, Bae, Kyung Taek, Lee, Kang Taek, Oh, Jimin, Kim, Ju Young, Lee, Young-Gi, Ryou, Myung-Hyun, Lee, Yong Min. Electrode design methodology for all-solid-state batteries: 3D structural analysis and performance prediction. Energy storage materials, vol.19, 124-129.

  54. Park, Joonam, Kim, Ju Young, Shin, Dong Ok, Oh, Jimin, Kim, Jumi, Lee, Myeong Ju, Lee, Young-Gi, Ryou, Myung-Hyun, Lee, Yong Min. Dimension-controlled solid oxide electrolytes for all-solid-state electrodes: Percolation pathways, specific contact area, and effective ionic conductivity. Chemical engineering journal, vol.391, 123528-.

  55. Oh, Dae Yang, Kim, Dong Hyeon, Jung, Sung Hoo, Han, Jung-Gu, Choi, Nam-Soon, Jung, Yoon Seok. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.39, 20771-20779.

  56. Wenzel, S., Weber, D.A., Leichtweiss, T., Busche, M.R., Sann, J., Janek, J.. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid state ionics, vol.286, 24-33.

  57. Zhang, Wenbo, Richter, Felix H., Culver, Sean P., Leichtweiss, Thomas, Lozano, Juan G., Dietrich, Christian, Bruce, Peter G., Zeier, Wolfgang G., Janek, Jürgen. Degradation Mechanisms at the Li10GeP2S12/LiCoO2 Cathode Interface in an All-Solid-State Lithium-Ion Battery. ACS applied materials & interfaces, vol.10, no.26, 22226-22236.

  58. Dewald, Georg F., Ohno, Saneyuki, Kraft, Marvin A., Koerver, Raimund, Till, Paul, Vargas-Barbosa, Nella M., Janek, Jürgen, Zeier, Wolfgang G.. Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes. Chemistry of materials : a publication of the American Chemical Society, vol.31, no.20, 8328-8337.

  59. Richards, William D., Miara, Lincoln J., Wang, Yan, Kim, Jae Chul, Ceder, Gerbrand. Interface Stability in Solid-State Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.1, 266-273.

  60. Zhu, Yizhou, He, Xingfeng, Mo, Yifei. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS applied materials & interfaces, vol.7, no.42, 23685-23693.

  61. Wenzel, Sebastian, Randau, Simon, Leichtweiß, Thomas, Weber, Dominik A., Sann, Joachim, Zeier, Wolfgang G., Janek, Jürgen. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.7, 2400-2407.

  62. Fan, Lei, Zhuang, Houlong L., Gao, Lina, Lu, Yingying, Archer, Lynden A.. Regulating Li deposition at artificial solid electrolyte interphases. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.7, 3483-3492.

  63. Xu, Rui, Cheng, Xin-Bing, Yan, Chong, Zhang, Xue-Qiang, Xiao, Ye, Zhao, Chen-Zi, Huang, Jia-Qi, Zhang, Qiang. Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, vol.1, no.2, 317-344.

  64. Schnell, Joscha, Günther, Till, Knoche, Thomas, Vieider, Christoph, Köhler, Larissa, Just, Alexander, Keller, Marlou, Passerini, Stefano, Reinhart, Gunther. All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of power sources, vol.382, 160-175.

  65. Lee, Kyulin, Lee, Jieun, Choi, Sunghun, Char, Kookheon, Choi, Jang Wook. Thiol-Ene Click Reaction for Fine Polarity Tuning of Polymeric Binders in Solution-Processed All-Solid-State Batteries. ACS energy letters, vol.4, no.1, 94-101.

  66. Koerver, Raimund, Aygün, Isabel, Leichtweiß, Thomas, Dietrich, Christian, Zhang, Wenbo, Binder, Jan O., Hartmann, Pascal, Zeier, Wolfgang G., Janek, Jürgen. Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of materials : a publication of the American Chemical Society, vol.29, no.13, 5574-5582.

  67. Zhang, Jun, Zheng, Chao, Li, Lujie, Xia, Yang, Huang, Hui, Gan, Yongping, Liang, Chu, He, Xinping, Tao, Xinyong, Zhang, Wenkui. Unraveling the Intra and Intercycle Interfacial Evolution of Li6PS5Cl‐Based All‐Solid‐State Lithium Batteries. Advanced energy materials, vol.10, no.4, 1903311-.

  68. Bresser, Dominic, Buchholz, Daniel, Moretti, Arianna, Varzi, Alberto, Passerini, Stefano. Alternative binders for sustainable electrochemical energy storage - the transition to aqueous electrode processing and bio-derived polymers. Energy & environmental science, vol.11, no.11, 3096-3127.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로