$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Quantitative Evaluation on Valve Leakage of Reciprocating Compressor Using System Characteristic Diagnosis Method 원문보기

Applied sciences, v.10 no.6, 2020년, pp.1946 -   

Han, Liubang (School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China) ,  Jiang, Kuosheng (School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China) ,  Wang, Qidong (School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China) ,  Wang, Xuanyao (School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China) ,  Zhou, Yuanyuan (School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China)

Abstract AI-Helper 아이콘AI-Helper

High impact and strong noise complicate the response of reciprocating compressor (RC). It requires a complex signal processing method that is a single response-based or excitation-based fault diagnosis method applied to RC valve leakage fault diagnosis. This paper proposes a quantitative diagnosis m...

참고문헌 (53)

  1. Zhao A compound interpolation envelope local mean decomposition and its application for fault diagnosis of reciprocating compressors Mech. Syst. Signal Process. 2018 10.1016/j.ymssp.2018.03.035 110 273 

  2. 10.1016/j.measurement.2019.107315 Sim, H.Y., Ramli, R., Saifizul, A., and Soong, M.F. (2020). Detection and estimation of valve leakage losses in reciprocating compressor using acoustic emission technique. Measurement, 152. 

  3. Tang Fault feature extraction of reciprocating compressor based on adaptive waveform decomposition and Lempel-Ziv complexity IEEE Access 2019 10.1109/ACCESS.2019.2923657 7 82522 

  4. 10.3390/app10020704 Liu, W.H., Jiang, Z.N., Wang, Y., Zhou, C., Sun, X., and Zhang, J. (2020). Performance degradation analysis and optimization of the stepless capacity regulation system for reciprocating compressors. Appl. Sci., 10. 

  5. Lu Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters Mech. Syst. Signal Process. 2016 10.1016/j.ymssp.2016.03.018 81 259 

  6. Figlus The application of a continuous wavelet transform for diagnosing damage to the timing chain tensioner in a motorcycle engine J. Vibroeng. 2015 17 1286 

  7. Bi Source identification of gasoline engine noise based on continuous wavelet transform and EEMD-RobustICA Appl. Acoust. 2015 10.1016/j.apacoust.2015.07.007 100 34 

  8. Madej Discrete wavelet transform and probabilistic neural network in IC engine fault diagnosis Eksploat. Niezawodn. 2010 4 47 

  9. Sharma Performance evaluation of decomposition methods to diagnose leakage in a reciprocating compressor under limited speed variation Mech. Syst. Signal Process. 2019 10.1016/j.ymssp.2018.07.029 125 275 

  10. Kordestani A modular fault diagnosis and prognosis method for hydro-control valve system based on redundancy in multisensor data information IEEE Trans. Reliab. 2019 10.1109/TR.2018.2864706 68 330 

  11. Loukopoulos Abrupt fault remaining useful life estimation using measurements from a reciprocating compressor valve failure Mech. Syst. Signal Process. 2019 10.1016/j.ymssp.2018.09.033 121 359 

  12. Roskosch Thermodynamic model for reciprocating compressors with the focus on fluid dependent efficiencies Int. J. Refrig. 2017 10.1016/j.ijrefrig.2017.08.011 82 104 

  13. Wang Investigation on the delayed closure of the suction valve in the refrigerator compressor by FSI modeling Int. J. Refrig. 2018 10.1016/j.ijrefrig.2018.05.004 91 111 

  14. 10.3390/app9061179 Liu, Z., Lan, Z.J., Guo, J.Z., Zhang, J., Xie, Y., Cao, X., and Duan, Z. (2019). A new hybrid reciprocating compressor model coupled with acoustic fem characterization and gas dynamics. Appl. Sci., 9. 

  15. 10.3390/app9050946 Liu, Z., Jia, W.G., Liang, L.H., and Duan, Z.Y. (2019). Analysis of pressure pulsation influence on compressed natural gas (CNG) compressor performance for ideal and real gas models. Appl. Sci., 9. 

  16. Zhao A feature extraction method based on HLMD and MFE for bearing clearance fault of reciprocating compressor Measurement 2016 10.1016/j.measurement.2016.03.076 89 34 

  17. Zhu Deep belief network-based internal valve leakage rate prediction approach Measurement 2019 10.1016/j.measurement.2018.10.020 133 182 

  18. Jafarian Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring Measurement 2018 10.1016/j.measurement.2018.04.062 128 527 

  19. Potocnik Semi-supervised vibration-based classification and condition monitoring of compressors Mech. Syst. Signal Process. 2017 10.1016/j.ymssp.2017.01.048 93 51 

  20. Pichler Fault detection in reciprocating compressor valves under varying load conditions Mech. Syst. Signal Process. 2016 10.1016/j.ymssp.2015.09.005 70-71 104 

  21. Loukopoulos Reciprocating compressor prognostics of an instantaneous failure mode utilising temperature only measurements Appl. Acoust. 2019 10.1016/j.apacoust.2017.12.003 147 77 

  22. Flett Fault detection and diagnosis of diesel engine valve trains Mech. Syst. Signal Process. 2016 10.1016/j.ymssp.2015.10.024 72-73 316 

  23. Qi Fault-diagnosis for reciprocating compressors using big data and machine learning Simul. Model. Pract. Theory 2018 10.1016/j.simpat.2017.10.005 80 104 

  24. Gu Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment Mech. Syst. Signal Process. 2011 10.1016/j.ymssp.2010.07.004 25 360 

  25. Zhang Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis Mech. Syst. Signal Process. 2017 10.1016/j.ymssp.2017.02.037 94 202 

  26. 10.3390/en12081438 Huang, B.S., Feng, G.J., Tang, X.L., Gu, J.X., Xu, G., Cattley, R., Gu, F., and Ball, A.D. (2019). A Performance Evaluation of Two Bispectrum Analysis Methods Applied to Electrical Current Signals for Monitoring Induction Motor-Driven Systems. Energies, 12. 

  27. Wang Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion Mech. Syst. Signal Process. 2015 56-57 97 

  28. 10.1155/2019/5656143 Jiang, K.S., Li, L.H., Han, L.B., and Guo, S. (2019). In-process quality inspection of rolling element bearings based on the measurement of microelastic deformation of outer ring. Shock Vib. 

  29. Gornicka Vibroacoustic symptom of the exhaust valve damage of the internal combustion engine J. Vibroeng. 2014 16 1925 

  30. Szymanski Diagnostics of automatic compensators of valve clearance in combustion engine with the use of vibration signal Mech. Syst. Signal Process. 2016 10.1016/j.ymssp.2015.07.015 68-69 479 

  31. Verma Intelligent condition based monitoring using acoustic signals for air compressors IEEE Trans. Reliab. 2016 10.1109/TR.2015.2459684 65 291 

  32. Jiang Quantitative evaluation of the impurity content of grease for low-speed heavy-duty bearing using an acoustic emission technique Meas. Control 2019 10.1177/0020294019858214 52 1159 

  33. 10.3390/e18070253 Figlus, T., Gnap, J., Skrucany, T., Sarkan, B., and Stoklosa, J. (2016). The use of denoising and analysis of the acoustic signal entropy in diagnosing engine valve clearance. Entropy, 18. 

  34. Albarbar Acoustic monitoring of engine fuel injection based on adaptive filtering techniques Appl. Acoust. 2010 10.1016/j.apacoust.2010.07.001 71 1132 

  35. Li A new method for nondestructive fault diagnosis of reciprocating compressor by means of strain-based p-V diagram Mech. Syst. Signal Process. 2019 10.1016/j.ymssp.2019.106268 133 1 

  36. Jiang In processing fault detection of machinery based on instantaneous phase signal IEEE Access 2019 10.1109/ACCESS.2019.2937225 7 123535 

  37. Elhaj Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring Mech. Syst. Signal Process. 2008 10.1016/j.ymssp.2007.08.003 22 374 

  38. Tran An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks Expert Syst. Appl. 2014 10.1016/j.eswa.2013.12.026 41 4113 

  39. Kandukuri A two-stage fault detection and classification scheme for electrical pitch drives in offshore wind farms using support vector machine IEEE Trans. Ind. Appl. 2019 10.1109/TIA.2019.2924866 55 5109 

  40. Liu A classification method for complex power quality disturbances using EEMD and rank wavelet SVM IEEE Trans. Smart Grid 2015 10.1109/TSG.2015.2397431 6 1678 

  41. Liu Feature extraction of rotor fault based on EEMD and curve code Measurement 2019 10.1016/j.measurement.2018.12.009 135 712 

  42. Lin An improved fault diagnosis method based on a genetic algorithm by selecting appropriate IMFs IEEE Access 2019 10.1109/ACCESS.2019.2915366 7 60310 

  43. Yang Diagnostics of gear deterioration using EEMD approach and PCA process Measurement 2015 10.1016/j.measurement.2014.10.026 61 75 

  44. Zhang A rogowski digital integrator with comb filter signal processing system IEEE Trans. Plasma Sci. 2018 10.1109/TPS.2018.2815699 46 1338 

  45. Zahradnik Design of optimal comb FIR filters-speed and robustness IEEE Signal Process. Lett. 2009 10.1109/LSP.2009.2016827 16 465 

  46. Zhang Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter Measurement 2017 10.1016/j.measurement.2017.03.006 103 361 

  47. Li A new rotation machinery fault diagnosis method based on deep structure and sparse least squares support vector machine IEEE Access 2019 10.1109/ACCESS.2019.2901363 7 26571 

  48. Gangsar A support vector machine based fault diagnostics of Induction motors for practical situation of multi-sensor limited data case Measurement 2019 10.1016/j.measurement.2018.12.011 135 694 

  49. Li Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine J. Sound Vib. 2018 10.1016/j.jsv.2018.04.036 428 72 

  50. Zou Data-driven modeling and real-time distributed control for energy efficient manufacturing systems Energy 2017 10.1016/j.energy.2017.03.123 127 247 

  51. Bellini Quantitative evaluation of induction motor broken bars by means of electrical signature analysis IEEE Trans. Ind. Appl. 2001 10.1109/28.952499 37 1248 

  52. Zhen Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping Mech. Syst. Signal Process. 2013 10.1016/j.ymssp.2012.07.018 34 191 

  53. 10.3390/en12040597 Iglesias-Martínez, M.E., Antonino-Daviu, J.A., de Córdoba, F.P., and Conejero, J.A. (2019). Rotor fault detection in induction motors based on time-frequency analysis using the bispectrum and the autocovariance of stray flux signals. Energies, 12. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로