최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기PloS one, v.15 no.3, 2020년, pp.e0229608 -
Sovrano, Valeria Anna (Center for Mind) , Baratti, Greta (Center for Mind) , Lee, Sang Ah (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea)
Disoriented animals and humans use both the environmental geometry and visual landmarks to guide their spatial behavior. Although there is a broad consensus on the use of environmental geometry across various species of vertebrates, the nature of disoriented landmark-use has been greatly debated in ...
1 Tolman EC . Cognitive maps in rats and man . Psychol Rev . 1948 ; 55 ( 4 ): 189 ? 208 . 10.1037/h0061626 18870876
2 Cheng K . A purely geometric module in the rat's spatial representation . Cognition . 1986 Jul ; 23 ( 2 ): 149 ? 178 . 10.1016/0010-0277(86)90041-7 3742991
3 Cheng K , Gallistel CR . Testing the geometric power of an animal’s spatial representation In: Roitblat HL , Bever TG , Terrace HS , editors. Animal cognition: Proceedings of the Harry Frank Guggenheim Conference . Hillsdale : Erlbaum ; 1984 p. 409 ? 242 .
4 Gallistel CR . The organization of learning . Cambridge : MIT Press ; 1990 .
5 Cheng K . Whither geometry? Troubles of the geometric module . Trends Cogn Sci . 2008 9 ; 12 ( 9 ): 355 ? 361 . 10.1016/j.tics.2008.06.004 18684662
6 Cheng K , Newcombe NS . Is there a geometric module for spatial orientation? Squaring theory and evidence . Psychon B Rev . 2005 2 ; 12 ( 1 ): 1 ? 23 .
7 Sovrano VA , Potrich D , Vallortigara G . Learning of geometry and features in bumblebees ( Bombus terrestris ) . J Comp Psychol . 2013 ; 127 ( 3 ): 312 ? 318 . 10.1037/a0032040 23815593
8 Sovrano VA , Rigosi E , Vallortigara G . Spatial reorientation by geometry in bumblebees . Plos ONE . 2012 5 18 ; 7 ( 5 ): e37449 10.1371/journal.pone.0037449 22624033
9 Wystrach A , Beugnon G . Ants learn geometry and features . Curr Biol . 2009 1 13 ; 19 ( 1 ): 61 ? 66 . 10.1016/j.cub.2008.11.054 19119010
10 Wystrach A , Cheng K , Sosa S , Beugnon G . Geometry, features, and panoramic views: ants in rectangular arenas . J Exp Psychol Anim B . 2011 ; 37 ( 4 ): 420 ? 435 .
11 Cheng K , Huttenlocher J , Newcombe NS . 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective . Psychon B Rev . 2013 12 ; 20 ( 6 ): 1033 ? 1054 .
12 Lee SA , Spelke ES . Two systems of spatial representation underlying navigation . Exp Brain Res . 2010 7 8 ; 206 ( 2 ): 179 ? 188 . 10.1007/s00221-010-2349-5 20614214
13 Twyman AD , Newcombe NS . Five reasons to doubt the existence of a geometric module . Cognitive Sci . 2010 9 2 ; 34 ( 7 ): 1315 ? 1356 .
14 Vallortigara G . Animals as natural geometers In: Tommasi L , Peterson MA , Nadel L , editors. Cognitive biology: Evolutionary and developmental perspectives on mind, brain and behavior . Cambridge : MIT Press ; 2009 p. 83 ? 104 .
15 Lee SA , Spelke ES . A modular geometric mechanism for reorientation in children . Cognitive Psychol . 2010 9 ; 61 ( 2 ): 152 ? 176 .
16 Spelke ES , Lee SA , Izard V . Beyond core knowledge: Natural geometry . Cognitive Sci . 2010 7 6 ; 34 ( 5 ): 863 ? 884 .
17 Doeller CF , King JA , Burgess N . Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory . P Natl Acad Sci . 2008 4 15 ; 105 ( 15 ): 5915 ? 5920 .
18 Cheung A , Sturzl W , Zeil J , Cheng K . The information content of panoramic images II: view-based navigation in nonrectangular experimental arenas . J Exp Psychol Anim B . 2008 1 ; 34 ( 1 ): 15 ? 30 .
19 Sturzl W , Cheung A , Cheng K , Zeil J . The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas . J Exp Psychol Anim B . 2008 ; 34 ( 1 ): 1 ? 14 .
20 Newcombe NS , Huttenlocher J . Development of spatial cognition In: Kuhn D , Siegler RS , editors. Handbook of child psychology . New York : Wiley ; 2007 p. 734 ? 776 .
21 Lee SA . The boundary-based view of spatial cognition: a synthesis . Curr Opin Behav Sci . 2017 8 1 ; 16 : 58 ? 65 .
22 Keinath AT , Julian JB , Epstein RA , Muzzio IA . Environmental geometry aligns the hippocampal map during spatial reorientation . Curr Biol . 2017 2 6 ; 27 ( 3 ): 309 ? 317 . 10.1016/j.cub.2016.11.046 28089516
23 Lee SA , Tucci V , Sovrano VA , Vallortigara G . Working memory and reference memory tests of spatial navigation in mice ( Mus musculus ) . J Comp Psychol . 2015 2 ; 129 ( 2 ): 189 ? 197 . 10.1037/a0039129 25984938
24 Hermer L , Spelke ES . A geometric process for spatial reorientation in young children . Nature 1994 7 ; 370 ( 6484 ): 57 ? 59 . 10.1038/370057a0 8015605
25 Wang RF , Hermer L , Spelke ES (1999). Mechanisms of reorientation and object localization by children: A comparison with rats . Behav Neurosci . 1999 1 ; 113 ( 3 ): 475 ? 485 . 10.1037//0735-7044.113.3.475 10443775
26 Lee SA , Shusterman A , Spelke ES . Reorientation and landmark-guided search by young children: Evidence for two systems . Psychol Sci . 2006 7 1 ; 17 ( 7 ): 577 ? 582 . 10.1111/j.1467-9280.2006.01747.x 16866742
27 Broglio C , Rodriguez F , Salas C . Spatial cognition and its neural basis in teleost fishes . Fish Fish . 2003 8 12 : 4 ( 3 ): 247 ? 255 .
28 Broglio C , Martin-Monzon I , Ocana FM , Gomez A , Duran E , Salas C , et al Hippocampal pallium and map-like memories through vertebrate evolution . J Behav Brain Sci . 2015 3 24 ; 5 ( 03 ): 109 ? 120 .
29 Salas C , Rodriguez F , Vargas JP , Duran E , Torres B . Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures . Behav Neurosci . 1996 1 ; 110 ( 5 ): 965 ? 980 . 10.1037//0735-7044.110.5.965 8918999
30 Salas C , Broglio C , Rodriguez F , Lopez JC , Portavella M , Torres B . Telencephalic ablation in goldfish impairs performance in a ‘spatial constancy’ problem but not in a cued one . Behav Brain Res . 1996 9 ; 79 ( 1?2 ): 193 ? 200 . 10.1016/0166-4328(96)00014-9 8883830
31 Lopez JC , Bingman VP , Rodriguez F , Gomez Y , Salas C . Dissociation of place and cue learning by telencephalic ablation in goldfish . Behav Neurosci . 2000 2 ; 114 ( 4 ): 687 ? 699 . 10.1037//0735-7044.114.4.687 10959527
32 Rodrıguez F , Lopez JC , Vargas JP , Broglio C , Gomez Y , Salas C . Spatial memory and hippocampal pallium through vertebrate evolution: Insights from reptiles and teleost fish . Brain Res Bull . 2002 3 21 ; 57 ( 3?4 ): 499 ? 503 . 10.1016/s0361-9230(01)00682-7 11923018
33 Duran E , Ocana FM , Gomez A , Jimenez-Moya F , Broglio C , Rodriguez F , et al Telencephalon ablation impairs goldfish allocentric spatial learning in a “hole-board” task . Acta Neurobiol Exp . 2008 ; 68 : 519 ? 525 .
34 Portavella M , Vargas JP . Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems . European J Neurosci . 2005 5 27 ; 21 ( 10 ): 2800 ? 2806 . 15926927
35 Broglio C , Rodriguez F , Gomez A , Arias JL , Salas C . Selective involvement of the goldfish lateral pallium in spatial memory . Behav Brain Res . 2010 7 11 ; 210 ( 2 ): 191 ? 201 . 20178818
36 Duran E , Ocana FM , Broglio C , Rodriguez F , Salas C . Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a “hole-board” task . Behav Brain Res . 2010 12 25 ; 214 ( 2 ): 480 ? 487 . 10.1016/j.bbr.2010.06.010 20600353
37 Vargas JP , Bingman VP , Portavella M , Lopez JC . Telencephalon and geometric space in goldfish . European J Neurosci . 2006 11 24 ; 24 ( 10 ): 2870 ? 2878 . 17156211
38 Rajan KE , Ganesh A , Dharaneedharan S , Radhakrishnan K . Spatial learning-induced egr-1 expression in telencephalon of gold fish Carassius auratus . Fish Physiol Biochem . 2011 3 ; 37 ( 1 ): 153 ? 159 . 10.1007/s10695-010-9425-4 20714804
39 Knapska E , Kaczmarek L . A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol . 2004 11 10 ; 74 ( 4 ): 183 ? 211 . 10.1016/j.pneurobio.2004.05.007 15556287
40 Gomez Y , Vargas JP , Portavella M , Lopez JC . Spatial learning and goldfish telencephalon NMDA receptors . Neurobiol Learn Mem . 2006 5 ; 85 ( 3 ): 252 ? 262 . 10.1016/j.nlm.2005.11.006 16464619
41 Sovrano VA , Bisazza A , Vallortigara G . Modularity and spatial reorientation in a simple mind: Encoding of geometric and nongeometric properties of a spatial environment by fish . Cognition . 2002 9 ; 85 ( 2 ): B51 ? B59 . 10.1016/s0010-0277(02)00110-5 12127704
42 Sovrano VA , Bisazza A , Vallortigara G . Modularity as a fish views it: Conjoining geometric and nongeometric information for spatial reorientation . J Exp Psychol Anim B . 2003 ; 29 ( 3 ): 199 ? 210 .
43 Sovrano VA , Bisazza A , Vallortigara G . Animals’ use of landmarks and metric information to reorient: effects of the side of the experimental space . Cognition . 2005 9 ; 97 ( 2 ): 121 ? 133 . 10.1016/j.cognition.2004.08.003 16226559
44 Sovrano VA , Bisazza A , Vallortigara G . How fish do geometry in large and in small spaces . Anim Cogn . 2007 6 21 ; 10 ( 1 ): 47 ? 54 . 10.1007/s10071-006-0029-4 16794851
45 Vargas JP , Lopez JC , Salas C , Thinus-Blanc C . Encoding of geometric and featural spatial information by Goldfish ( Carassius auratus ) . J Comp Psychol . 2004 ; 118 ( 2 ): 206 ? 216 . 10.1037/0735-7036.118.2.206 15250808
46 Lee SA , Vallortigara G , Ruga V , Sovrano VA . Independent effects of geometry and landmark in a spontaneous reorientation task: a study of two species of fish . Anim Cogn . 2012 5 19 ; 15 ( 5 ): 861 ? 870 . 10.1007/s10071-012-0512-z 22610461
47 Lee SA , Vallortigara G , Flore M , Spelke ES , Sovrano VA . Navigation by environmental geometry: the use of zebrafish as a model . J Exp Biol . 2013 ; 216 ( 19 ): 3693 ? 3699 . 23788708
48 Lee SA , Ferrari A , Vallortigara G , Sovrano VA . Boudary primacy in spatial mapping: Evidence from zebrafish ( Danio rerio ) . Behav Process . 2015 10 ; 119 : 116 ? 122 .
49 Caro TM , Roper R , Young M , Dank R . Inter-observer reliability . Behaviour . 1979 1 1 ; 69 ( 3?4 ): 303 ? 315 .
50 Sovrano VA , Potrich D , Foa A , Bertolucci C . Extra-visual systems in the spatial reorientation of cavefish . Sci Rep . 2018 12 ; 8 : 17698 10.1038/s41598-018-36167-9 30523284
51 Sutherland NS , Mackintosh NJ . Mechanisms of animal discrimination learning New York : Academic Press ; 1971 .
52 Lever C , Burton S , Jeewajee A , O'Keefe J , Burgess N . Boundary vector cells in the subiculum of the hippocampal formation . J Neurosci . 2009 8 5 ; 29 ( 31 ): 9771 ? 9777 . 10.1523/JNEUROSCI.1319-09.2009 19657030
53 Lee SA , Miller JF , Watrous AJ , Sperling MR , Sharan A , Worrell GA , et al Electrophysiological signatures of spatial boundaries in the human subiculum . J Neurosci . 2018 3 28 ; 38 ( 13 ): 3265 ? 3272 . 10.1523/JNEUROSCI.3216-17.2018 29467145
54 Solstad T , Boccara CN , Kropff E , Moser MB , Moser EI . Representation of geometric borders in the entorhinal cortex . Science . 2008 12 19 ; 322 ( 5909 ): 1865 ? 1868 . 10.1126/science.1166466 19095945
55 Smeets WJ , Marin O , Gonzalez A . Evolution of the basal ganglia: new perspectives through a comparative approach . J Anat . 2000 5 ; 196 ( 4 ): 501 ? 517 . 10923983
56 Morris RG . Spatial localization does not require the presence of local cues . Learning and Motivation . 1981 5 ; 12 ( 2 ): 239 ? 260 .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.