$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Development of ultra-pure NaI(Tl) detectors for the COSINE-200 experiment 원문보기

The European physical journal. C, Particles and fields, v.80 no.9, 2020년, pp.814 -   

Park, B. J. ,  Choi, J. J. ,  Choe, J. S. ,  Gileva, O. ,  Ha, C. ,  Iltis, A. ,  Jeon, E. J. ,  Kim, D. Y. ,  Kim, K. W. ,  Kim, S. K. ,  Kim, Y. D. ,  Ko, Y. J. ,  Lee, C. H. ,  Lee, H. S. ,  Lee, I. S. ,  Lee, M. H. ,  Lee, S. H. ,  Ra, S. J. ,  Son, J. K. ,  Shin, K. A.

Abstract AI-Helper 아이콘AI-Helper

AbstractThe annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-100 experiment has been operating with 106 ...

참고문헌 (57)

  1. Astrophys. J. D Clowe 648 L109 2006 10.1086/508162 D. Clowe et al., A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109 (2006) 

  2. N. Aghanim et al., (Planck Collaboration), Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209 

  3. Rev. Mod. Phys. G Bertone 90 045002 2018 10.1103/RevModPhys.90.045002 G. Bertone, D. Hooper, History of dark matter. Rev. Mod. Phys. 90, 045002 (2018) 

  4. Phys. Rev. Lett. BW Lee 39 165 1977 10.1103/PhysRevLett.39.165 B.W. Lee, S. Weinberg, Cosmological lower bound on heavy-neutrino masses. Phys. Rev. Lett. 39, 165 (1977) 

  5. Phys. Rev. D MW Goodman 31 3059 1985 10.1103/PhysRevD.31.3059 M.W. Goodman, E. Witten, Detectability of certain dark matter candidates. Phys. Rev. D 31, 3059 (1985) 

  6. J. Phys. G TM Undagoitia 43 013001 2016 10.1088/0954-3899/43/1/013001 T.M. Undagoitia, L. Rauch, Dark matter direct-detection experiments. J. Phys. G 43, 013001 (2016) 

  7. J. Phys. G M Schumann 46 103003 2019 10.1088/1361-6471/ab2ea5 M. Schumann, Direct detection of WIMP dark matter: concepts and status. J. Phys. G 46, 103003 (2019) 

  8. 10.1140/epjc/s10052-013-2648-7 R. Bernabei et al., (DAMA/LIBRA Collaboration), Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 73, 2648 (2013) 

  9. 10.3390/universe4110116 R. Bernabei et al., (DAMA/LIBRA Collaboration), First Model Independent Results from DAMA/LIBRA-Phase2. Nucl. Phys. At. Energy 19, 307 (2018) 

  10. JCAP C Savage 0904 010 2009 10.1088/1475-7516/2009/04/010 C. Savage, G. Gelmini, P. Gondolo, K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches. JCAP 0904, 010 (2009) 

  11. Y. J. Ko et al., (COSINE-100 Collaboration), Comparison between DAMA/LIBRA and COSINE-100 in the light of quenching factors. JCAP 1911, 008 (2019) 

  12. M. Tanabashi et al., (Particle Data Group Collaboration), Review of particle physics. Phys. Rev. D 98, 030001 (2018) 

  13. Phys. Rev. Lett. SC Kim 108 181301 2012 10.1103/PhysRevLett.108.181301 S.C. Kim et al., New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors. Phys. Rev. Lett. 108, 181301 (2012) 

  14. 10.1140/epjc/s10052-014-3184-9 G. Angloher et al., (CRESST-II Collaboration), Results on low mass WIMPs using an upgraded CRESST-II detector. Eur. Phys. J. C 74, 3184 (2014) 

  15. R. Agnese et al., (SuperCDMS Collaboration), Search for low-mass weakly interacting massive particles with SuperCDMS. Phys. Rev. Lett. 112, 241302 (2014) 

  16. K. Abe et al., (XMASS Collaboration), Direct dark matter search by annual modulation in XMASS-I. Phys. Lett. B 759, 272 (2016) 

  17. D. S. Akerib et al., (LUX Collaboration), Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303 (2017) 

  18. E. Aprile et al., (XENON Collaboration), Search for electronic recoil event rate modulation with 4 years of XENON100 data.’ Phys. Rev. Lett. 118, 101101 (2017) 

  19. R. Agnese et al., (SuperCDMS Collaboration), Results from the super cryogenic dark matter search experiment at Soudan. Phys. Rev. Lett. 120, 061802 (2018) 

  20. E. Aprile et al., (XENON Collaboration), Dark matter search results from a one tonne $$\times $$ year exposure of XENON1T. Phys. Rev. Lett. 121, 111302 (2018) 

  21. P. Agnes et al., (DarkSide Collaboration), Low-mass dark matter search with the DarkSide-50 experiment. Phys. Rev. Lett. 121, 081307 (2018) 

  22. D.S. Akerib et al., (LUX Collaboration), Search for annual and diurnal rate modulations in the LUX experiment. Phys. Rev. D 98, 062005 (2018) 

  23. 10.1103/PhysRevD.100.102002 A.H. Abdelhameed et al., (CRESST Collaboration), First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 100, 102002 (2019) 

  24. Astropart. Phys. KW Kim 62 249 2015 10.1016/j.astropartphys.2014.10.004 K.W. Kim et al., Tests on NaI(Tl) crystals for WIMP search at the Yangyang Underground Laboratory. Astropart. Phys. 62, 249 (2015) 

  25. 10.1140/epjc/s10052-019-6860-y M. Antonello et al., (SABRE Collaboration), The SABRE project and the SABRE Proof-of-Principle. Eur. Phys. J. C 79, 363 (2019) 

  26. G. Adhikari et al., (COSINE-100 Collaboration), Initial performance of the COSINE-100 experiment. Eur. Phys. J. C 78, 107 (2018) 

  27. RADIOISOTOPES K-I Fushimi 67 101 2018 10.3769/radioisotopes.67.101 K.-I. Fushimi, Low background measurement by means of NaI(Tl) scintillator: improvement of sensitivity for cosmic dark matter. RADIOISOTOPES 67, 101 (2018) 

  28. Eur. Phys. J. C I Coarasa 79 233 2019 10.1140/epjc/s10052-019-6733-4 I. Coarasa et al., ANAIS-112 sensitivity in the search for dark matter annual modulation. Eur. Phys. J. C 79, 233 (2019) 

  29. Eur. Phys. J. C J Amare 79 228 2019 10.1140/epjc/s10052-019-6697-4 J. Amare et al., Performance of ANAIS-112 experiment after the first year of data taking. Eur. Phys. J. C 79, 228 (2019) 

  30. Phys. Rev. Res. B Suerfu 2 013223 2020 10.1103/PhysRevResearch.2.013223 B. Suerfu, M. Wada, W. Peloso, M. Souza, F. Calaprice, J. Tower, G. Ciampi, Growth of ultra-high purity NaI(Tl) crystal for dark matter searches. Phys. Rev. Res. 2, 013223 (2020) 

  31. 10.1038/s41586-018-0739-1 G. Adhikari et al., (COSINE-100 Collaboration), An experiment to search for dark-matter interactions using sodium iodide detectors. Nature 564, 83 (2018) 

  32. 10.1103/PhysRevLett.123.031302 G. Adhikari et al., (COSINE-100 Collaboration), Search for a dark matter-induced annual modulation signal in NaI(Tl) with the COSINE-100 experiment. Phys. Rev. Lett. 123, 031302 (2019) 

  33. Phys. Rev. Lett. J Amare 123 031301 2019 10.1103/PhysRevLett.123.031301 J. Amare et al., First results on dark matter annual modulation from ANAIS-112 experiment. Phys. Rev. Lett. 123, 031301 (2019) 

  34. 10.1140/epjc/s10052-016-4030-z P. Adhikari et al., (KIMS Collaboration), Understanding internal backgrounds in NaI(Tl) crystals toward a 200 kg array for the KIMS-NaI experiment. Eur. Phys. J. C 76, 185 (2016) 

  35. 10.22323/1.301.0885 P. Adhikari et al., (COSINE-100 Collaboration), Background model for the NaI(Tl) crystals in COSINE-100. Eur. Phys. J. C 78, 490 (2018) 

  36. 10.1016/j.nima.2017.01.041 J. S. Park et al., (KIMS Collaboration), Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment. Nucl. Instrum. Methods A 851, 103 (2017) 

  37. G. Adhikari et al., The COSINE-100 liquid scintillator veto system. arXiv:2004.03463 

  38. J. Phys. Conf. Ser. Y Kanemitsu 1468 012054 2020 10.1088/1742-6596/1468/1/012054 Y. Kanemitsu, D. Chernyak, H. Ejiri, K. Fushimi, K. Hata, R. Hazama, H. Ikeda, K. Imagawa, K. Inoue, A. Kozlov, R. Orito, T. Shima, Y. Takemoto, S. Umehara, K. Yasuda, S. Yoshida, Purification of the NaI(tl) crystal for dark matter search project PICOLON. J. Phys. Conf. Ser. 1468, 012054 (2020) 

  39. J. Radioanal. Nucl. Chem. K Shin 317 1329 2018 10.1007/s10967-018-6006-y K. Shin, O. Gileva, Y. Kim, H.S. Lee, H. Park, Reduction of the radioactivity in sodium iodide (NaI) powder by recrystallization method. J. Radioanal. Nucl. Chem. 317, 1329 (2018) 

  40. JINST K Shin 15 C07031 2020 10.1088/1748-0221/15/07/C07031 K. Shin, J. Choe, O. Gileva, A. Iltis, Y. Kim, C. Lee, H.S. Lee, M.H. Lee, H.K. Park, A facility for mass production of ultra-pure NaI powder for the COSINE-200 experiment. JINST 15, C07031 (2020) 

  41. 10.22323/1.340.0668 S. Ra et al., Scintillation crystal growth at the CUP. PoS ICHEP2018, 668 (2019) 

  42. H. S. Lee et al., (KIMS Collaboration), First limit on WIMP cross section with low background CsI(Tl) crystal detector. Phys. Lett. B 633, 201 (2006) 

  43. Nucl. Instrum. Methods A HS Lee 571 644 2007 10.1016/j.nima.2006.10.325 H.S. Lee et al., Development of low-background CsI(Tl) crystals for WIMP search. Nucl. Instrum. Methods A 571, 644 (2007) 

  44. 10.1088/1748-0221/13/09/P09006 G. Adhikari et al., (COSINE-100 Collaboration), The COSINE-100 data acquisition system. JINST 13, P09006 (2018) 

  45. G. Adhikari et al., Lowering the energy threshold in COSINE-100 dark matter searches. arXiv:2005.13784 

  46. J. Phys. Soc. Jpn. S Kubota 69 3435 2000 10.1143/JPSJ.69.3435 S. Kubota, F. Shiraishi, Y. Takami, Scintillation process in NaI(Tl): comparison with scintillation models. J. Phys. Soc. Jpn. 69, 3435 (2000) 

  47. Nucl. Instrum. Methods A L Trefilova 486 474 2002 10.1016/S0168-9002(02)00756-8 L. Trefilova, A. Kudin, L. Kovaleva, B. Zaslavsky, D. Zosim, S. Bondarenko, Concentration dependence of the light yield and energy resolution of NaI: Tl and CsI: Tl crystals excited by gamma, soft X-rays and alpha particles. Nucl. Instrum. Methods A 486, 474 (2002) 

  48. 10.1016/j.nima.2020.164556 J. Choi, B. Park, C. Ha, K. Kim, S. Kim, Y. Kim, Y. Ko, H. Lee, S. Lee, and S. Olsen, Improving the light yield of NaI(Tl) crystal detectors. Nucl. Instrum. Methods A 981, 164556 (2020). https://doi.org/10.1016/j.nima.2020.164556 

  49. 10.1016/j.nima.2008.04.082 R. Bernabei et al., (DAMA/LIBRA Collaboration), The DAMA/LIBRA apparatus. Nucl. Instrum. Meth. A 592, 297 (2008) 

  50. 10.1088/1748-0221/7/03/P03009 R. Bernabei et al., (DAMA/LIBRA Collaboration), Performances of the new high quantum efficiency PMTs in DAMA/LIBRA. JINST 7, P03009 (2012) 

  51. Ann. Stat. JH Friedman 29 1189 2001 10.1214/aos/1013203451 J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189 (2001) 

  52. 10.1140/epjc/s10052-017-5011-6 G. Adhikari et al., (KIMS Collaboration), Understanding NaI(Tl) crystal background for dark matter searches. Eur. Phys. J. C 77 437 (2017) 

  53. Eur. Phys. J. C J Amare 79 412 2019 10.1140/epjc/s10052-019-6911-4 J. Amare et al., Analysis of backgrounds for the ANAIS-112 dark matter experiment. Eur. Phys. J. C 79, 412 (2019) 

  54. E. Barbosa de Souza et al., (COSINE-100 Collaboration), Study of cosmogenic radionuclides in the COSINE-100 NaI(Tl) detectors. Astropart. Phys. 115, 102390 (2020) 

  55. G.H. Yu, C. Ha, E.J. Jeon, K.W. Kim, N.Y. Kim, Y.D. Kim, H.S. Lee, H.K. Park, and C. Rott, Depth-profile study of 210Pb in the surface of an NaI(T) crystal. arXiv:2001.06132 

  56. 10.1088/1748-0221/13/06/T06005 H. Prihtiadi et al., (COSINE-100 Collaboration), Muon detector for the COSINE-100 experiment. JINST 13, T02007 (2018) 

  57. 10.1103/PhysRevLett.122.131802 C. Ha et al., (COSINE-100 Collaboration), First direct search for inelastic boosted dark matter with COSINE-100. Phys. Rev. Lett. 122, 131802 (2019) 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로